Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
CD47, as an innate immune checkpoint molecule, is an important target of cancer immunotherapy. We previously reported that a high-affinity SIRPα variant FD164 fused with IgG1 subtype Fc showed a better antitumor effect than wild-type SIRPα in an immunodeficient tumor-bearing model. However, CD47 is widely expressed in blood cells, and the drugs targeting CD47 may cause potential hematological toxicity. Herein, we modified the FD164 molecule by Fc mutation (NA) to inactivate the Fc-related effector function and named it nFD164. Moreover, we further studied the potential of nFD164 as a candidate drug targeting CD47, including the stability, in vitro activity, antitumor activity of single or combined drugs in vivo, and hematological toxicity in humanized CD47/SIRPα transgenic mouse model. The results show that nFD164 maintains strong binding activity to CD47 on tumor cells, but has weak binding activity with red blood cells or white blood cells, and nFD164 has good drug stability under accelerated conditions (high temperature, bright light and freeze-thaw cycles). More importantly, in the immunodeficient or humanized CD47/SIRPα transgenic mice bearing tumor model, the combination of nFD164 and anti-CD20 antibody or anti-mPD-1 antibody had a synergistic antitumor effect. Especially in transgenic mouse models, nFD164 combined with anti-mPD-1 significantly enhanced tumor suppressive activity compared with anti-mPD-1 (P < 0.01) or nFD164 (P < 0.01) as a single drug and had fewer hematology-related side effects than FD164 or Hu5F9-G4. When these factors are taken together, nFD164 is a promising high-affinity CD47-targeting drug candidate with better stability, potential antitumor activity, and improved safety profile.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2023.114618 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!