A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Phenylbutyric acid robustly increases Npy mRNA expression in hypothalamic neurons by increasing H3K9/14 acetylation at the Npy promoter. | LitMetric

Phenylbutyric acid robustly increases Npy mRNA expression in hypothalamic neurons by increasing H3K9/14 acetylation at the Npy promoter.

Biochem Biophys Res Commun

Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Medicine, The University of Toronto, ON, Canada; Department of Obstetrics and Gynecology, The University of Toronto, ON, Canada. Electronic address:

Published: May 2023

Phenylbutyric acid (PBA) is a commonly used inhibitor of endoplasmic reticulum stress, as well as a histone deacetylase (HDAC) inhibitor, that increases hypothalamic expression of orexigenic neuropeptide Y (Npy). Elucidation of the dose-response relationship and mechanism of action of PBA may position this compound as a potential therapeutic for eating disorders where Npy is dysregulated, such as anorexia nervosa. The hypothalamic neuronal model mHypoE-41 was exposed to PBA (5 μM-5 mM) to assess the maximal Npy upregulation. Transcription factors and histone acetylation-related genes were assessed by qRT-PCR, as well as the involvement estrogen receptors (ER) using siRNA knockdown. Changes in global and Npy promoter-specific H3K9/14 acetylation were detected using western analysis and chromatin immunoprecipitation. Treatment with 5 mM PBA led to a 10-fold and 206-fold increase in Npy mRNA at 4 and 16 h, respectively, as well as increased NPY secretion. This induction was not observed with another orexigenic neuropeptide Agrp. PBA significantly increased the expression of Foxo1, Socs3 and Atf3 and the ERs Esr1 and Esr2 mRNA, but the PBA-mediated induction of Npy was not dependent on ERα or ERβ. PBA induced histone H3K9/14 acetylation at 3 distinct Npy promoter regions, suggesting increased Npy transcriptional activation due to a more open chromatin structure. We also report changes in Hdac mRNAs by PBA and the fatty acid palmitate, highlighting the importance of epigenetic regulation in Npy transcription. Overall, we conclude that PBA has strong orexigenic potential and can robustly and specifically induce Npy in hypothalamic neurons through a mechanism likely involving histone H3 acetylation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2023.03.031DOI Listing

Publication Analysis

Top Keywords

npy
13
h3k9/14 acetylation
12
phenylbutyric acid
8
npy mrna
8
hypothalamic neurons
8
npy promoter
8
pba
8
orexigenic neuropeptide
8
increased npy
8
acid robustly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!