A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Engineering high post-electroporation viabilities and transfection efficiencies for elongated cells on suspended nanofiber networks. | LitMetric

Engineering high post-electroporation viabilities and transfection efficiencies for elongated cells on suspended nanofiber networks.

Bioelectrochemistry

Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA; Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USA. Electronic address:

Published: August 2023

The impact of cell shape on cell membrane permeabilization by pulsed electric fields is not fully understood. For certain applications, cell survival and recovery post-treatment is either desirable, as in gene transfection, electrofusion, and electrochemotherapy, or is undesirable, as in tumor and cardiac ablations. Understanding of how morphology affects cell viability post-electroporation may lead to improved electroporation methods. In this study, we use precisely aligned nanofiber networks within a microfluidic device to reproducibly generate elongated cells with controlled orientations to an applied electric field. We show that cell viability is significantly dependent on cell orientation, elongation, and spread. Further, these trends are dependent on the external buffer conductivity. Additionally, we see that cell survival for elongated cells is still supported by the standard pore model of electroporation. Lastly, we see that manipulating the cell orientation and shape can be leveraged for increased transfection efficiencies when compared to spherical cells. An improved understanding of cell shape and pulsation buffer conductivity may lead to improved methods for enhancing cell viability post-electroporation by engineering the cell morphology, cytoskeleton, and electroporation buffer conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2023.108415DOI Listing

Publication Analysis

Top Keywords

elongated cells
12
cell viability
12
cell
11
transfection efficiencies
8
nanofiber networks
8
cell shape
8
cell survival
8
viability post-electroporation
8
lead improved
8
cell orientation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!