In the last few years, many works have tried to explain the predictions of deep learning models. Few methods, however, have been proposed to verify the accuracy or faithfulness of these explanations. Recently, influence functions, which is a method that approximates the effect that leave-one-out training has on the loss function, has been shown to be fragile. The proposed reason for their fragility remains unclear. Although previous work suggests the use of regularization to increase robustness, this does not hold in all cases. In this work, we seek to investigate the experiments performed in the prior work in an effort to understand the underlying mechanisms of influence function fragility. First, we verify influence functions using procedures from the literature under conditions where the convexity assumptions of influence functions are met. Then, we relax these assumptions and study the effects of non-convexity by using deeper models and more complex datasets. Here, we analyze the key metrics and procedures that are used to validate influence functions. Our results indicate that the validation procedures may cause the observed fragility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2023.03.029 | DOI Listing |
J Pediatr Nurs
January 2025
University of Padua, Laboratory of Studies and Evidence Based Nursing, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padua, Italy.
Purpose: The primary challenge in infant care is developing a comprehensive, rapid, and reliable assessment tool that is minimally dependent on subjective evaluations and applicable in various inpatient settings. This study aims to develop and assess the structural validity of the Infant Nursing Assessment Scale (INA), enabling a comprehensive evaluation of hospitalized newborns and infants.
Design And Methods: A development and validation study based on cross-sectional design was undertaken.
Plant Physiol Biochem
December 2024
College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Monitoring for Heavy Metal Pollutants, Ministry of Ecology and Environment, Hunan, 410019, China. Electronic address:
With the intensification of climate change coupled with the inadequate agricultural management in certain regions, plants face numerous challenges due to various abiotic stresses. Stress associated proteins (SAPs) are essential functional genes in plants for coping with stress. This research provides a functional analysis of OsSAP17, a protein belonging to the SAP family in rice.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP, Brazil.
Bacillus subtilis is known to promote root growth and improve plant physiology, while organic compost enhances soil water retention. This study explored the combined effect of inoculating B. subtilis in organic compost on soybean growth under water deficit.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
Melatonin (Mel) is a tryptophan-derived (N-acetyl-5-methoxytryptamine) molecule. In the present study, role of Mel in the regulation of various anaplerotic enzymes is discussed in relation to N metabolism and H-ATPase activity in mung bean under Cd stress. The application of Mel to the Cd-stressed mung bean seedlings was remarkable in improving the activity of hexokinase (35.
View Article and Find Full Text PDFWater Res
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, China. Electronic address:
To address the challenge of antibiotic-containing wastewater, a novel micromagnetic carrier-modified integrated fixed-film activated sludge system (MC-IFAS) was developed for treating tetracycline (TC)-containing swine wastewater in this study. The magnetic effects of the MC significantly enhanced TC removal by improving TC biosorption and biodegradation in both the suspended activated sludge and the carrier-attached biofilm in the MC-IFAS. The increased electrostatic attraction and number of binding sites in both the activated sludge and the biofilm enhanced their TC biosorption capacities, particularly in the activated sludge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!