A high performance composite separator with robust environmental stability for dendrite-free lithium metal batteries.

J Colloid Interface Sci

State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, PR China; Foshan (Southern China) Institute for New Materials, Foshan 528200, Guangdong, PR China.

Published: July 2023

The garnet ceramic LiLaZrTaO (LLZTO) modified separators have been proposed to overcome the poor thermal stability and wettability of commercial polyolefin separators. However, the side reaction of LLZTO in the air leads to deterioration of environmental stability of composite separators (PP-LLZTO), which will limit the electrochemical performance of batteries. Herein, the LLZTO with the polydopamine (PDA) coating (LLZTO@PDA) was prepared by solution oxidation, and then applied it to a commercial polyolefin separator to achieve a composite separator (PP-LLZTO@PDA). LLZTO@PDA is stable in the air, and no LiCO can be observed on the surface even after 90 days in the air. Besides, LLZTO@PDA coating endows the PP-LLZTO@PDA separator with the tensile strength (up to 103 MPa), good wettability (contact angle 0°) and high ionic conductivity (0.93 mS cm). Consequently, the Li/PP-LLZTO@PDA/Li symmetric cell cycles stably for 600 h without significant dendrites generation, and the assembled Li//LFP cells with PP-LLZTO@PDA-D30 separators deliver a high capacity retention of 91.8% after 200 cycles at 0.1C. This research provides a practical strategy for constructing composite separators with excellent environmental stability and high electrochemical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.03.149DOI Listing

Publication Analysis

Top Keywords

environmental stability
12
composite separator
8
commercial polyolefin
8
composite separators
8
separators
5
high
4
high performance
4
composite
4
performance composite
4
separator
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!