Quantum Embedding Method for the Simulation of Strongly Correlated Systems on Quantum Computers.

J Phys Chem Lett

IBM Quantum, IBM Research - Zürich, 8803 Rüschlikon, Switzerland.

Published: April 2023

Quantum computing has emerged as a promising platform for simulating strongly correlated systems in chemistry, for which the standard quantum chemistry methods are either qualitatively inaccurate or too expensive. However, due to the hardware limitations of the available noisy near-term quantum devices, their application is currently limited only to small chemical systems. One way for extending the range of applicability can be achieved within the quantum embedding approach. Herein, we employ the projection-based embedding method for combining the variational quantum eigensolver (VQE) algorithm, although not limited to, with density functional theory (DFT). The developed VQE-in-DFT method is then implemented efficiently on a real quantum device and employed for simulating the triple bond breaking process in butyronitrile. The results presented herein show that the developed method is a promising approach for simulating systems with a strongly correlated fragment on a quantum computer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.3c00330DOI Listing

Publication Analysis

Top Keywords

quantum
9
quantum embedding
8
embedding method
8
correlated systems
8
method
4
method simulation
4
simulation correlated
4
systems
4
systems quantum
4
quantum computers
4

Similar Publications

Recent studies on topological materials are expanding into the nonlinear regime, while the central principle, namely the bulk-edge correspondence, is yet to be elucidated in the strongly nonlinear regime. Here, we reveal that nonlinear topological edge modes can exhibit the transition to spatial chaos by increasing nonlinearity, which can be a universal mechanism of the breakdown of the bulk-edge correspondence. Specifically, we unveil the underlying dynamical system describing the spatial distribution of zero modes and show the emergence of chaos.

View Article and Find Full Text PDF

Topology is being widely adopted to understand and to categorize quantum matter in modern physics. The nexus of topology orders, which engenders distinct quantum phases with benefits to both fundamental research and practical applications for future quantum devices, can be driven by topological phase transition through modulating intrinsic or extrinsic ordering parameters. The conjoined topology, however, is still elusive in experiments due to the lack of suitable material platforms.

View Article and Find Full Text PDF

In the current investigation, the efficiency inhibition of two newly synthesized bi-pyrazole derivatives, namely 2,3-bis[(bis((1 H-pyrazol-1-yl) methyl) amino)] pyridine (Tetra-Pz-Ortho) and 1,4-bis[(bis((1 H-pyrazol-1-yl) methyl) amino)] benzene (Tetra-Pz-Para) for corrosion of carbon steel (C&S) in 1 M HCl medium was evaluated. A Comparative study of inhibitor effect of Tetra-Pz-Ortho and Tetra-Pz-Para was conducted first using weight loss method and EIS (Electrochemical Impedance Spectroscopy) and PDP (Potentiodynamic Polarisation) techniques. Tetra-Pz-Ortho and Tetra-Pz-Para had a maximum inhibition efficacy of 97.

View Article and Find Full Text PDF

Accurate Dehydrogenation Enthalpies Dataset for Liquid Organic Hydrogen Carriers.

Sci Data

January 2025

Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA.

This contribution presents a comprehensive extension of the QM9 dataset (originally at 133 K molecules) with the calculation of G4MP2 enthalpies for 9,841 molecules, featuring up to nine heavy atoms. We present QM9-LOHC, a (de)hydrogenation dataset of 10,373 reactions, including a minimum of 5.5% weight hydrogen storage capacity in line with the Department of Energy standards for Liquid Organic Hydrogen Carriers (LOHC).

View Article and Find Full Text PDF

New applications such as the Internet of Things, autonomous driving, Industry X.0 and many more will transmit sensitive information via fibers and over the air with envisioned data rates beyond terabits per second. Therefore, the encryption has to be simple, fast and spectrally efficient, so that the power consumption and latency are low and the scarce bandwidth is not wasted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!