Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This review discusses pooled experience of creation, implementation and effectiveness of machine learning technologies in CT-based diagnosis of intracranial hemorrhages. The authors analyzed 21 original articles between 2015 and 2022 using the following keywords: «intracranial hemorrhage», «machine learning», «deep learning», «artificial intelligence». The review contains general data on basic concepts of machine learning and also considers in more detail such aspects as technical characteristics of data sets used for creation of AI algorithms for certain type of clinical task, their possible impact on effectiveness and clinical experience.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.17116/neiro20238702185 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!