On the Subspace Invariance of Population Responses.

Neuron Behav Data Anal Theory

Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.

Published: November 2018

In cat visual cortex, the response of a neural population to the linear combination of two sinusoidal gratings (a plaid) can be well approximated by a weighted sum of the population responses to the individual gratings - a property we refer to as . We tested subspace invariance in mouse primary visual cortex by measuring the angle between the population response to a plaid and the plane spanned by the population responses to its individual components. We found robust violations of subspace invariance arising from a strong, negative correlation between the responses of neurons to individual gratings and their responses to the plaid. Contrast invariance, a special case of subspace invariance, also failed. The responses of some neurons decreased with increasing contrast, while others increased. Altogether the data show that subspace and contrast invariance do not hold in mouse primary visual cortex. These findings rule out some models of population coding, including vector averaging, some versions of normalization and temporal multiplexing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10065745PMC

Publication Analysis

Top Keywords

subspace invariance
16
population responses
12
visual cortex
12
responses individual
8
individual gratings
8
mouse primary
8
primary visual
8
responses neurons
8
contrast invariance
8
population
6

Similar Publications

Purpose: To develop a deep subspace learning network that can function across different pulse sequences.

Methods: A contrast-invariant component-by-component (CBC) network structure was developed and compared against previously reported spatiotemporal multicomponent (MC) structure for reconstructing MR Multitasking images. A total of 130, 167, and 16 subjects were imaged using T, T-T, and T-T- -fat fraction (FF) mapping sequences, respectively.

View Article and Find Full Text PDF

Although detailed analytical models for droop-controlled microgrids are available, they are computationally complex and do not consider real-time variations in microgrid parameters and operating conditions. This paper proposes Kurtosis-Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT) to identify the dominant modes in droop-controlled inverter-based microgrids (IBMGs) using local real-time measurements. In the proposed approach, a short-duration small disturbance is applied to the selected DG's active power droop gain, and then, the system's dominant modes are estimated from its local measurements.

View Article and Find Full Text PDF

The cost of encoding a system Hamiltonian in a digital quantum computer as a linear combination of unitaries (LCU) grows with the 1-norm of the LCU expansion. The Block Invariant Symmetry Shift (BLISS) technique reduces this 1-norm by modifying the Hamiltonian action on only the undesired electron-number subspaces. Previously, BLISS required a computationally expensive nonlinear optimization that was not guaranteed to find the global minimum.

View Article and Find Full Text PDF

In this paper, a direction of arrival (DOA) estimation algorithm for non-circular signal by a large-spacing uniform array with an auxiliary element has been presented. The auxiliary element is placed away from the last element of the large-spacing uniform array. The spacing between arbitrary two elements of the whole array is not limited by the half-wavelength of the signal.

View Article and Find Full Text PDF

Accurate estimation of low frequency modes in power system are very much important for improving small signal stability. The parametric model parameters estimator known as Total least square estimation of signal parameters via rotational invariance techniques (TLS-ESPRIT) works effectively even in noisy conditions. However, this model parameter estimator requires prior information about numbers of modes of the signal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!