Magnetic skyrmions are topological spin textures that can be used as memory and logic components for advancing the next generation spintronics. In this regard, control of nanoscale skyrmions, including their sizes and densities, is of particular importance for enhancing the storage capacity of skyrmionic devices. Here, we propose a viable route for engineering ferrimagnetic skyrmions via tuning the magnetic properties of the involved ferrimagnets FeTb. Via tuning the composition of FeTb that alters the magnetic anisotropy and the saturation magnetization, the size of the ferrimagnetic skyrmion () and the average density (η) can be effectively tailored in [Pt/FeTb/Ta] multilayers. In particular, a stabilization of sub-50 nm skyrmions with a high density is demonstrated at room temperature. Our work provides an effective approach for designing ferrimagnetic skyrmions with the desired size and density, which could be useful for enabling high-density ferrimagnetic skyrmionics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.3c02006 | DOI Listing |
Nanomaterials (Basel)
December 2024
International Institute for Sustainability with Knotted Chiral Meta Matter, Kagamiyama, Higashihiroshima 739-8511, Hiroshima, Japan.
I revisit the well-known phase transition between the hexagonal skyrmion lattice and the homogeneous state within the phenomenological Dzyaloshinskii theory for chiral magnets, which includes only the exchange, Dzyaloshinskii-Moriya, and Zeeman energy contributions. I show that, in a narrow field range near the saturation field, the hexagonal skyrmion order gradually transforms into a square arrangement of skyrmions. Then, by the second-order phase transition during which the lattice period diverges, the square skyrmion lattice releases a set of repulsive isolated skyrmions.
View Article and Find Full Text PDFNat Commun
November 2024
Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, China.
Noncollinear dipole textures greatly extend the scientific merits and application perspective of ferroic materials. In fact, noncollinear spin textures have been well recognized as one of the core issues of condensed matter, e.g.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait.
Moiré magnets have emerged as intriguing platforms for hosting exotic magnetic states due to the competing interactions within these materials. Recent experiments have reported noncollinear magnetic states in moiréCrI3, particularly focusing on twisted double bilayer (tDB) and double trilayer (tDT) configurations. However, atomistic simulations of moiréCrI3have largely been limited to the bilayer case.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
Centrosymmetric bulk magnets made of layered Gd intermetallics had been discovered recently to exhibit helical spin spirals with a wavelength of ≈2 nm that transform into skyrmion lattices at certain magnetic fields. Here we report on the observation of a spin spiral state at the Gd(0001) surface. Spin-polarized scanning tunneling microscopy images show striped regions with a periodicity of about 2 nm.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
The giant magnetoresistance effect in two-dimensional (2D) magnetic materials has sparked substantial interest in various fields; including sensing; data storage; electronics; and spintronics. Their unique 2D layered structures allow for the manifestation of distinctive physical properties and precise performance regulation under different conditions. In this review, we present an overview of this rapidly developing research area.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!