Background: In the United States, patients can access their electronic health record (EHR) data through patient portals. However, current patient portals are mainly focused on a single provider, with very limited data sharing capabilities and put low emphasis on independent sensemaking of the EHR data. This makes it very challenging for patients to switch between different portals and aggregate the data to obtain a complete picture of their medical history and to make sense of it. Owing to this fragmentation, patients are exposed to numerous inconveniences such as medical errors, repeated tests, and limited self-advocacy.

Objective: To overcome the limitations of EHR patient portals, we designed and developed Discovery-a web-based application that aggregates EHR data from multiple providers and present them to the patient for efficient exploration and sensemaking. To learn how well Discovery meets the patients' sensemaking needs and what features should such applications include, we conducted an evaluation study.

Methods: We conducted a remote study with 14 participants. In a 60-minute session and relying on the think-aloud protocol, participants were asked to complete a variety of sensemaking tasks and provide feedback upon completion. The audio materials were transcribed for analysis and the video recordings of the users' interactions with Discovery were annotated to provide additional context. These combined textual data were thematically analyzed to surface themes that reflect how participants used Discovery's features, what sensemaking of their EHR data really entails, and what features are desirable to support that process better.

Results: We found that Discovery provided much needed features and could be used in a variety of everyday scenarios, especially for preparing and during clinical visits and also for raising awareness, reflection, and planning. According to the study participants, Discovery provided a robust set of features for supporting independent exploration and sensemaking of their EHR data: summary and quick overview of the data, finding prevalence, periodicity, co-occurrence, and pre-post of medical events, as well as comparing medical record types and subtypes across providers. In addition, we extracted important design implications from the user feedback on data exploration with multiple views and nonstandard user interface elements.

Conclusions: Patient-centered sensemaking tools should have a core set of features that can be learned quickly and support common use cases for a variety of users. The patients should be able to detect time-oriented patterns of medical events and get enough context and explanation on demand in a single exploration view that feels warm and familiar and relies on patient-friendly language. However, this view should have enough plasticity to adjust to the patient's information needs as the sensemaking unfolds. Future designs should include the physicians in the patient's sensemaking process and improve the communication in clinical visits and via messaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131650PMC
http://dx.doi.org/10.2196/41346DOI Listing

Publication Analysis

Top Keywords

ehr data
20
patient portals
12
sensemaking ehr
12
data
11
sensemaking
9
electronic health
8
health record
8
exploration sensemaking
8
study participants
8
discovery provided
8

Similar Publications

Explore deep learning applications in predictive analytics for public health data, identify challenges and trends, and then understand the current landscape. A systematic literature review was conducted in June 2023 to search articles on public health data in the context of deep learning, published from the inception of medical and computer science databases through June 2023. The review focused on diverse datasets, abstracting applications, challenges, and advancements in deep learning.

View Article and Find Full Text PDF

Background: Rich data on diverse patients and their treatments and outcomes within Electronic Health Record (EHR) systems can be used to generate real world evidence. A health recommender system (HRS) framework can be applied to a decision support system application to generate data summaries for similar patients during the clinical encounter to assist physicians and patients in making evidence-based shared treatment decisions.

Objective: A human-centered design (HCD) process was used to develop a HRS for treatment decision support in orthopaedic medicine, the Informatics Consult for Individualized Treatment (I-C-IT).

View Article and Find Full Text PDF

SNOMED-CT and learning health systems for NHS dentistry - a dream needing to become reality.

Br Dent J

January 2025

Professor of Oral and Maxillofacial Surgery, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK; Bloomsbury Trust, London, UK.

There has been discussion and confusion about SNOMED-CT (systematised nomenclature of medicine clinical terminology), learning health systems (LHSs) and their relevance in dentistry. This article aims to provide an overview of SNOMED-CT, LHSs and the all-too-often omitted patient and service benefits from their use. LHSs are delivering impactful benefits to patients and services globally in medicine.

View Article and Find Full Text PDF

Evaluation of COVID-19 Diagnosis Codes for Identification of SARS-CoV-2 Infections in a Nursing Home Cohort, 2022-2023.

J Am Med Dir Assoc

January 2025

Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.

Objectives: This study aimed to evaluate the utility of electronic health record (EHR) diagnosis codes for monitoring SARS-CoV-2 infections among nursing home residents.

Design: A retrospective cohort study design was used to analyze data collected from nursing homes operating under the tradename Signature Healthcare between January 2022 and June 2023.

Setting And Participants: Data from 31,136 nursing home residents across 76 facilities in Kentucky, Tennessee, Indiana, Ohio, North Carolina, Georgia, Alabama, and Virginia were included.

View Article and Find Full Text PDF

AI-based models to predict decompensation on traumatic brain injury patients.

Comput Biol Med

January 2025

INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal; FCTUC - Faculty of Sciences and Technology of the University of Coimbra, Coimbra, Portugal. Electronic address:

Traumatic Brain Injury (TBI) is a form of brain injury caused by external forces, resulting in temporary or permanent impairment of brain function. Despite advancements in healthcare, TBI mortality rates can reach 30%-40% in severe cases. This study aims to assist clinical decision-making and enhance patient care for TBI-related complications by employing Artificial Intelligence (AI) methods and data-driven approaches to predict decompensation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!