Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Providing the right respiratory support is an essential skill, vital for anyone treating sick children. Recent advances in respiratory support include developments in both non-invasive and invasive ventilatory strategies. In non-invasive ventilation, newer modalities are being developed, in an attempt to decrease the need for invasive ventilation. This include newer techniques like Heated humidified high-flow nasal cannula (HHHFNC) and improvements in existing modes. The success of Continuous positive airway pressure (CPAP) and other non-invasive modes depend to a large extent on choosing and maintaining a suitable interface. When it comes to invasive ventilation, recent advances are focussing on increasing automation, improving patient comfort and minimising lung injury. Concepts like mechanical power are attempts at understanding the mechanisms of unintended injuries resulting from respiratory support and newer monitoring methods like transpulmonary pressure, thoracic impedance tomography are attempts at measuring potential markers of lung injury. Using the vast arrays of available ventilatory options judiciously, considering their advantages and drawbacks in every individual case will be the prime responsibility of clinicians in the future. Simultaneously, efforts have been made to identify potential drugs that can favourably modify the pathophysiology of acute respiratory distress syndrome (ARDS). Unfortunately, though eagerly awaited, most pharmaceutical agents tried in pediatric ARDS have not shown definite benefit. Pulmonary local drug and gene therapy using liquid ventilation strategies may revolutionize our future understanding and management of lung diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12098-023-04559-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!