Waterlogging occurs due to poor soil drainage or excessive rainfall. It is a serious abiotic stress factor that negatively affects crop growth. Waterlogging often causes plants to shed leaves, fruits, and, ultimately, to die. Peach (Prunus persica) trees are generally intolerant to waterlogging, and the primary peach rootstock used in Chinais "Maotao," which has very poor resistance to sensitivity. Therefore, waterlogging has become a restriction on the development of the peach industry in many regions. In this experiment, we tested the waterlogging resistance of "Maotao (Prunus persica (L.) Batsch)" (MT), "Shannong1 (GF677 × Cadaman)" (SN1), and "Mirabolano 29C (Prunus cerasifera)" (M29C) rootstocks. Using a simulated waterlogging method, the effects of waterlogging on the photosynthetic system, leaf pigments, osmotic adjustment, lipid membrane peroxidation, and antioxidant system of these three peach rootstocks were studied, and the changes of chlorophyll fluorescence parameters and fluorescence imaging were observed. The results showed that, with prolonged waterlogging, the photosynthetic pigment content and photosynthesis of the three peach rootstocks decreased rapidly, but the decomposition rate of SN1 and M29C chlorophyll was slower, and it still had high light energy absorption and energy transfer capabilities under waterlogging stress, which reduced the damage caused by waterlogging stress; under the stress of flooding, the osmoregulatory substances of the three rootstocks increased to varying degrees compared with normal conditions. At the same time, the enzyme activity of superoxide dismutase (SOD) activity, peroxidase (POD) activity, and catalase (CAT) activity in the leaves of the three rootstocks under flooding stress all increased and then decreased; during this period, malondialdehyde (MDA) continued to increase, and SN1 and M29C were significantly lower than MT; and chlorophyll fluorescence parameters, including the maximum photochemical efficiency (Fv/Fm), actual photochemical efficiency (ΦPSII), photochemical quenching coefficient (qP), non-photochemical quenching (NPQ), and electron transfer rate (ETR) decreased significantly. The tolerance of SN1 and M29C to waterlogging was significantly better than that of MT rootstocks. The rootstock and grafted seedlings of SN1 have good waterlogging tolerance.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00709-023-01850-wDOI Listing

Publication Analysis

Top Keywords

waterlogging
13
three peach
12
prunus persica
12
sn1 m29c
12
waterlogging resistance
8
peach prunus
8
waterlogging photosynthetic
8
peach rootstocks
8
chlorophyll fluorescence
8
fluorescence parameters
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!