, the causative agents of bacillary dysentery, remains a significant threat to public health. essential oil (LC-EO), one of the natural essential oils, exhibited promising biological activities. In this study, the antibacterial effects and possible mechanisms of LC-EO on and its application in lettuce medium were investigated. The minimum inhibitory concentration (MIC) of LC-EO against ATCC 25931 and CMCC 51592 was 4 and 6 μL/mL, respectively. The LC-EO could inhibit the growth of , and decreased to undetectable levels with 4 μL/mL for 1 h in Luria-Bertani broth. The antibacterial mechanism indicated that after the treatment of LC-EO, the production of reactive oxygen species and the activity of superoxide dismutase were significantly elevated in cells, and eventually led to the lipid oxidation product, the malondialdehyde content that significantly increased. Moreover, LC-EO at 2 MIC could destroy 96.51% of bacterial cell membrane integrity, and made cells to appear wrinkled with a rough surface, so that the intracellular adenosine triphosphate leakage was about 0.352-0.030 μmol/L. Finally, the results of application evaluation indicated that the addition of LC-EO at 4 μL/mL in lettuce leaves and 6 μL/mL in lettuce juice could decrease the number of to undetectable levels without remarkable influence on the lettuce leaf sensory quality. In summary, LC-EO exerted strong antibacterial activity and has the potential to control in food industry.

Download full-text PDF

Source
http://dx.doi.org/10.1089/fpd.2022.0084DOI Listing

Publication Analysis

Top Keywords

antibacterial activity
8
essential oil
8
application lettuce
8
lc-eo
8
undetectable levels
8
lettuce
5
antibacterial
4
activity mechanism
4
mechanism essential
4
oil application
4

Similar Publications

Objective: Dictyostelium differentiation-inducing factors 1 and 3 [DIF-1 (1) and DIF-3 (2), respectively], along with their derivatives, such as Ph-DIF-1 (3) and Bu-DIF-3 (4), demonstrate antibacterial activity in vitro against Gram-positive bacteria, including methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), vancomycin-sensitive Enterococcus faecalis (VSE), and vancomycin-resistant Enterococcus faecium [VRE (VanA)]. This study investigates the therapeutic potential of DIF compounds against these Gram-positive bacteria.

View Article and Find Full Text PDF

Staphylococcaceae are a diverse bacterial family with important implications for human and animal health. This study highlights the One Health relevance of their environmental dispersal, particularly, by identifying closely related or genetically identical strains circulating between farm and community environments. Environmental Staphylococcaceae strains were isolated from animal farms and interconnected areas within a university setting, both influenced by anthropogenic activities.

View Article and Find Full Text PDF

Enterococcus faecalis is responsible for numerous serious infections, and treatment options often include ampicillin combined with an aminoglycoside or dual beta-lactam therapy with ampicillin and a third-generation cephalosporin. The mechanism of dual beta-lactam therapy relies on the saturation of penicillin-binding proteins (PBPs). Ceftobiprole exhibits high affinity binding to nearly all E.

View Article and Find Full Text PDF

Interleukin-17: A pleiotropic cytokine implicated in inflammatory, infectious, and malignant disorders.

Cytokine Growth Factor Rev

January 2025

MCW Cancer Center and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA; WIN Consortium, Paris, France; University of Nebraska, Lincoln, NE, USA. Electronic address:

IL-17A, referred to as IL-17, is the founding member of a family of pro-inflammatory cytokines, including IL-17B, IL-17C, IL-17D, IL-17E (or IL-25), and IL-17F, which act via receptors IL-17RA to IL-17RE, and elicit potent cellular responses that impact diverse diseases. IL-17's interactions with various cytokines include forming a heterodimer with IL-17F and being stimulated by IL-23's activation of Th17 cells, which can lead to inflammation and autoimmunity. IL-17 is implicated in infectious diseases and inflammatory disorders such as rheumatoid arthritis and psoriasis, promoting neutrophil recruitment and anti-bacterial immunity, but potentially exacerbating fungal and viral infections, revealing its dual role as protective and pathologic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!