Stability of high-concentration protein formulations is considered a major challenge in current biopharmaceutical development. In this work, we introduce laser-based mid-infrared (IR) spectroscopy as a versatile technique to study the effect of protein concentration and presence of sugars on the thermal denaturation of the model protein bovine serum albumin (BSA). Many analytical techniques struggle to characterize the complex structural transition that occurs during protein denaturation. To this end, a commercially available laser-based mid-IR spectrometer equipped with a customized flow cell was employed to record IR spectra of BSA in the temperature range of 25-85 °C. The temperature perturbation induces a conformational change from a native α-helical to an intermolecular β-sheet secondary structure in BSA. Systematic investigation of the concentration dependence of the α-β transition temperature between 30 and 90 mg mL shows a trend of decreasing denaturation temperatures at higher BSA concentrations. In-depth chemometric analysis by a multivariate curve resolution-alternating least squares (MCR-ALS) analysis of the spectra, suggested the formation of not one but two intermediates in the denaturation of BSA. Subsequently, the impact of sugars on denaturation temperatures was investigated, revealing both stabilizing (trehalose, sucrose, and mannose) and destabilizing (sucralose) effects, illustrating the applicability of this method as an investigative tool for stabilizers. These results highlight the potential and versatility of laser-based IR spectroscopy for analysis of protein stability at high concentrations and varying conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116488 | PMC |
http://dx.doi.org/10.1021/acs.analchem.3c00489 | DOI Listing |
Appl Spectrosc
December 2024
Research Division of Environmental Analytics, Process Analytics and Sensors, Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria.
Volatile organic compounds (VOCs) are an ever-growing hazard for health and environment due to their increased emissions and accumulation in the air. Quantum cascade laser-based infrared (QCL-IR) sensors hold significant promise for gas monitoring, thanks to their compact, rugged design, high laser intensity, and high molecule-specific detection capabilities within the mid-infrared spectrum's fingerprint region. In this work, tunable external cavity QCLs were complemented by an innovative germanium-on-silicon integrated optics waveguide sensing platform with integrated microlenses for efficient backside optical interfacing for the tunable laser spectrometer.
View Article and Find Full Text PDFNanophotonics
May 2024
Centre for Advanced Photonics and Process Analysis, Munster Technological University, T12 T66T Bishopstown, Cork, Ireland.
Analyst
December 2024
Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Science, Paul Wittsack-Str. 10, 68163 Mannheim, Germany.
The fast and reliable detection, segmentation and visualization of latent fingerprints are the main tasks in forensics. Currently, conventional fingerprints are searched for, recorded and subsequently analyzed traditional destructive physical and chemical methods. For firmly defined crime objects and undefined crime scenes, the forensic process is very time-consuming and can take several hours for a single fingerprint.
View Article and Find Full Text PDFA mid-infrared laser-based sensor is designed and demonstrated for trace detection of benzene, toluene, ethylbenzene, and xylene isomers at ambient conditions. The sensor is based on a distributed feedback inter-band cascade laser emitting near 3.29 µm and an off-axis cavity-enhanced absorption spectroscopy configuration with an optical gain of 2800.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!