Interlayer excitons (IXs) in two-dimensional (2D) heterostructures provide an exciting avenue for exploring optoelectronic and valleytronic phenomena. Presently, valleytronic research is limited to transition metal dichalcogenide (TMD) based 2D heterostructure samples, which require strict lattice (mis) match and interlayer twist angle requirements. Here, we explore a 2D heterostructure system with experimental observation of spin-valley layer coupling to realize helicity-resolved IXs, without the requirement of a specific geometric arrangement, i.e., twist angle or specific thermal annealing treatment of the samples in 2D Ruddlesden-Popper (2DRP) halide perovskite/2D TMD heterostructures. Using first-principle calculations, time-resolved and circularly polarized luminescence measurements, we demonstrate that Rashba spin-splitting in 2D perovskites and strongly coupled spin-valley physics in monolayer TMDs render spin-valley-dependent optical selection rules to the IXs. Consequently, a robust valley polarization of ∼14% with a long exciton lifetime of ∼22 ns is obtained in type-II band aligned 2DRP/TMD heterostructure at ∼1.54 eV measured at 80 K. Our work expands the scope for studying spin-valley physics in heterostructures of disparate classes of 2D semiconductors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c12546DOI Listing

Publication Analysis

Top Keywords

interlayer excitons
8
twist angle
8
spin-valley physics
8
valley-polarized interlayer
4
excitons chalcogenide-halide
4
chalcogenide-halide perovskite-van
4
perovskite-van der
4
der waals
4
heterostructures
4
waals heterostructures
4

Similar Publications

The generation of interlayer charge transfer excitons upon photoexcitation is strongly desirable for two-dimensional (2D) materials stacked through van der Waals interactions. In this work, we investigate photoinduced charge transfer in silicanes (SiH) with three typical stackings. A concept of the regional natural hole orbital and its conjugated particle orbital is developed to characterize excited states in solids.

View Article and Find Full Text PDF

Excitons, Coulomb-driven bound states of electrons and holes, are typically composed of integer charges. However, in bilayer systems influenced by charge fractionalization, a more interesting form of interlayer exciton can emerge, in which pairing occurs between constituents that carry fractional charges. Despite numerous theoretical predictions for these fractional excitons, their experimental observation has remained unexplored.

View Article and Find Full Text PDF

In van der Waals (vdW) architectures of transition metal dichalcogenides (TMDCs), the coupling between interlayer exciton and quantum degrees of freedom opens unprecedented opportunities for excitonic physics. Taking the MoSe homobilayer as representative, we identify that the interlayer registry defines the nature and dynamics of the lowest-energy interlayer exciton. The large layer polarization () is proved, which ensures the formation of layer-resolved interlayer excitons.

View Article and Find Full Text PDF

Room-Temperature, Strong Emission of Momentum-Forbidden Interlayer Excitons in Nanocavity-Coupled Twisted van der Waals Heterostructures.

Nano Lett

January 2025

Department of Materials Science and Engineering, Centre for Functional Photonics, and Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong S.A.R., 999077, China.

The emission efficiency of interlayer excitons (IEs) in twisted 2D heterostructures has long suffered from momentum mismatch, limiting their applications in ultracompact excitonic devices. Here, we report strong room-temperature emission of momentum-forbidden IE in 30°-twisted MoS/WS heterobilayers. Utilizing a plasmonic nanocavity, the Purcell effect boosts the IE emission intensity in the cavity by over 2 orders of magnitude.

View Article and Find Full Text PDF
Article Synopsis
  • Excitons, which are pairs of electrons and holes held together by Coulomb forces, can form a superfluid at low temperatures due to their bosonic properties.
  • The research involves directly imaging this exciton superfluid in a specific material setup (MoSe-WSe heterostructure), demonstrating a significant level of order across the sample.
  • The study also details how variations in exciton density and temperature help construct a phase diagram, revealing that the superfluid state can persist up to 15 K, aligning well with theoretical expectations and paving the way for advancements in quantum devices and superfluid research.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!