Hot electron (HE) photocatalysis is one of the most intriguing fields of nanoscience, with a clear potential for technological impact. Despite much effort, the mechanisms of HE photocatalysis are not fully understood. Here we investigate a mechanism based on transient electron spillover on a molecule and subsequent energy release into vibrational modes. We use state-of-the-art real-time Time Dependent Density Functional Theory (rt-TDDFT), simulating the dynamics of a HE moving within linear chains of Ag or Au atoms, on which CO, N, or HO are adsorbed. We estimate the energy a HE can release into adsorbate vibrational modes and show that certain modes are selectively activated. The energy transfer strongly depends on the adsorbate, the metal, and the HE energy. Considering a cumulative effect from multiple HEs, we estimate this mechanism can transfer tenths of an eV to molecular vibrations and could play an important role in HE photocatalysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10103299 | PMC |
http://dx.doi.org/10.1021/acs.nanolett.3c00013 | DOI Listing |
Sensors (Basel)
December 2024
College of Computer and Information Sciences (CCIS), King Saud University, Riyadh 11543, Saudi Arabia.
One of the most promising applications for electroencephalogram (EEG)-based brain-computer interfaces (BCIs) is motor rehabilitation through motor imagery (MI) tasks. However, current MI training requires physical attendance, while remote MI training can be applied anywhere, facilitating flexible rehabilitation. Providing remote MI training raises challenges to ensuring an accurate recognition of MI tasks by healthcare providers, in addition to managing computation and communication costs.
View Article and Find Full Text PDFSensors (Basel)
December 2024
AI and Big Data Department, Endicott College, Woosong University, Daejeon 34606, Republic of Korea.
Sensor networks generate vast amounts of data in real-time, which challenges existing predictive maintenance frameworks due to high latency, energy consumption, and bandwidth requirements. This research addresses these limitations by proposing an edge-cloud hybrid framework, leveraging edge devices for immediate anomaly detection and cloud servers for in-depth failure prediction. A K-Nearest Neighbors (KNNs) model is deployed on edge devices to detect anomalies in real-time, reducing the need for continuous data transfer to the cloud.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Doctoral School of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independenței nr. 313, Sector 6, 060042 Bucureşti, Romania.
This review explores the integration of polymer materials into piezoelectric composite structures, focusing on their application in sensor technologies, and wearable electronics. Piezoelectric composites combining ceramic phases like BaTiO, KNN, or PZT with polymers such as PVDF exhibit significant potential due to their enhanced flexibility, processability, and electrical performance. The synergy between the high piezoelectric sensitivity of ceramics and the mechanical flexibility of polymers enables the development of advanced materials for biomedical devices, energy conversion, and smart infrastructure applications.
View Article and Find Full Text PDFToxics
December 2024
School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
Sewage sludge is recognized as both a source and a reservoir for antibiotic resistance genes (ARGs). Within an anaerobic digestion (AD) system, the presence of microplastics (MPs) has been observed to potentially facilitate the proliferation of these ARGs. Understanding the influence of MPs on microbial behavior and horizontal gene transfer (HGT) within the AD system is crucial for effectively managing the dissemination of ARGs in the environment.
View Article and Find Full Text PDFMicroorganisms
December 2024
Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, 00123 Rome, RM, Italy.
For the safe use of microbiome-based solutions in agriculture, the genome sequencing of strains composing the inoculum is mandatory to avoid the spread of virulence and multidrug resistance genes carried by them through horizontal gene transfer to other bacteria in the environment. Moreover, the annotated genomes can enable the design of specific primers to trace the inoculum into the soil and provide insights into the molecular and genetic mechanisms of plant growth promotion and biocontrol activity. In the present work, the genome sequences of some members of beneficial microbial consortia that have previously been tested in greenhouse and field trials as promising biofertilizers for maize, tomato and wheat crops have been determined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!