Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: We investigated the feasibility of aneurysm sac embolization using a novel self-expanding porous shape memory polymer (SMP) device during endovascular aortic abdominal or thoracic aneurysm repair (EVAR).
Methods: Retrospective analysis of consecutive patients treated at 2 centers in Germany. Patients were treated from January 2019 to July 2021 with follow-up at 7 days and 3, 6, and 12 months. Aneurysm sacs were implanted with SMP devices immediately following endograft placement during the same procedure. Primary endpoint was technically successful SMP-device deployment into the aneurysm sac outside the endograft. Secondary endpoints were changes in aneurysm volume and associated complications (e.g., endoleaks).
Results: We included 18 patients (16 males), aged 72 ± 9 years, achieving 100% technical success. Mean preprocedure aortic aneurysm sac volume was 195 ± 117 mL with a perfused aneurysm volume of 97 ± 60 mL. A mean of 24 ± 12 SMP devices per patient were used (range 5-45, corresponding to 6.25-56.25 mL expanded embolic material volume). All evaluable patients exhibited sac regression except 2 patients yet to reach 3-month follow-up. At mean 11 ± 7 months (range 3-24), change in aneurysm volume from baseline was -30 ± 21 mL (p < 0.001). In 8 patients, aneurysm regression was observed despite type 2 endoleaks in 6 and type 1A endoleaks in 2, none of them requiring further intervention to date. No morbidity or mortality related to this treatment occurred.
Conclusions: SMP devices for aortic aneurysm sac embolization during endovascular repair appear feasible and safe in this small case series. Prospective studies are needed.
Key Points: • Shape memory polymer is a novel, self-expanding, porous, and radiolucent embolic device material. • Aortic aneurysm sacs were treated with polymer devices immediately following endograft placement. • Aortic aneurysm sac regression was observed in all patients with over 3-month follow-up. • Aortic aneurysm sac regression was observed even in the presence of endoleaks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10068687 | PMC |
http://dx.doi.org/10.1186/s41747-023-00328-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!