A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ultrafast hot electron-hole plasma photoluminescence in two-dimensional semiconductors. | LitMetric

The transition metal dichalcogenide family of semiconducting two-dimensional materials has recently shown a prominent potential to be an ideal platform to study the exciton Mott transition into electron-hole plasma and liquid phases due to their strong Coulomb interactions. Here, we show that pulsed laser excitation at high pump fluences can induce this exciton Mott transition to an electron-hole plasma in mono and few-layer transition metal dichalcogenides at room temperature. The formation of an electron-hole plasma leads to a broadband light emission spanning from the near infrared to the visible region. In agreement with our theoretical calculations, the photoluminescence emission at high energies displays an exponential decay that directly reflects the electronic temperature - a characteristic fingerprint of unbound electron-hole pair recombination. Furthermore, two-pulse excitation correlation measurements were performed to study the dynamics of electronic cooling, which shows two decay time components, one of less than 100 fs and a slower component of few ps associated with the electron-phonon and phonon-lattice bath thermalizations, respectively. Our work may shed light on further studies of the exciton Mott transition into other two-dimensional materials and their heterostructures and its applications in nanolasers and other optoelectronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2nr06732cDOI Listing

Publication Analysis

Top Keywords

electron-hole plasma
16
exciton mott
12
mott transition
12
transition metal
8
two-dimensional materials
8
transition electron-hole
8
electron-hole
5
transition
5
ultrafast hot
4
hot electron-hole
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!