Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Spatial point process models are theoretically useful for mapping discrete events, such as plant or animal presence, across space; however, the computational complexity of fitting these models is often a barrier to their practical use. The log-Gaussian Cox process (LGCP) is a point process driven by a latent Gaussian field, and recent advances have made it possible to fit Bayesian LGCP models using approximate methods that facilitate rapid computation. These advances include the integrated nested Laplace approximation (INLA) with a stochastic partial differential equations (SPDE) approach to sparsely approximate the Gaussian field and an extension using pseudodata with a Poisson response. To help link the theoretical results to statistical practice, we provide an overview of INLA for point process data and then illustrate their implementation using freely available data. The analyzed datasets include both a completely observed spatial field and an incomplete data situation. Our well-commented R code is shared in the online supplement. Our intent is to make these methods accessible to the practitioner of spatial statistics without requiring deep knowledge of point process theory.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062232 | PMC |
http://dx.doi.org/10.1080/02664763.2021.2023116 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!