Objective The purpose of this in vitro study is to compare the flexural strength and Weibull modulus of 5 different monolithic computer-aided design/computer-aided manufacturing (CAD/CAM) ceramics. Methods A total of 50 specimens were fabricated, 10 from each of the following materials: lithium disilicate-based ceramic (IPS e.max CAD), zirconia -reinforced lithium-silicate ceramic (Vita Suprinity), leucite-based glass ceramic (IPS Empress CAD), and two zirconia-based ceramics (Zenostar and CopraSmile). The specimens were 4 mm wide, 2 mm thick, and 16 mm long. Flexural strength test was executed using a universal testing machine (Model 5980, Instron Industrial Products, Norwood, MA, USA). The two-parameter Weibull distribution function was used to analyze the variability of flexural strength values. Statistical analysis was performed on SPSS Version 23 (IBM Corp., Armonk, NY, USA) using one-way analysis of variance (ANOVA) and post-hoc Tukey's test. Results Suprinity had the highest Weibull modulus value, while Empress CAD displayed the lowest value. One-way ANOVA showed significant difference in the flexural strength between the different materials tested (p0.05) Post-hoc analysis revealed significant differences among all the test groups in terms of flexural strength. Zenostar presented the highest mean flexural strength value (1033.90 MPa), while Empress CAD had the lowest value. Conclusion High-translucency zirconia had superior flexural properties than translucent zirconia, lithium disilicate ceramics, zirconia-reinforced lithium silicate ceramics, and leucite-based glass ceramics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10064933PMC
http://dx.doi.org/10.7759/cureus.36958DOI Listing

Publication Analysis

Top Keywords

flexural strength
28
empress cad
12
flexural
8
monolithic computer-aided
8
computer-aided design/computer-aided
8
design/computer-aided manufacturing
8
vitro study
8
weibull modulus
8
ceramic ips
8
leucite-based glass
8

Similar Publications

The development and modification of grouting materials constitute crucial factors influencing the effectiveness of grouting. Given the pivotal role of water in the hydration of cement-based composite materials and construction processes, this study proposes an exploratory approach using green, economical magnetized water technology to enhance the performance of cement grouts. The research systematically investigates the effects of magnetized water on the fundamental grouting properties (stability, rheological behavior, and stone body strength) of cement grouts, prepared under varying magnetization conditions (including magnetic intensity, water flow speed, and cycle times).

View Article and Find Full Text PDF

Risk-based bridge life cycle cost and environmental impact assessment considering climate change effects.

Sci Rep

January 2025

Department of Civil and Environmental Engineering, Seoul National University, Seoul, 08826, Republic of Korea.

To enhance sustainability and resilience against climate change in infrastructure, a quantitative evaluation of both environmental impact and cost is important within a life cycle framework. Climate change effects can lead performance deterioration in bridge components during their operational phase, highlighting the necessity for a risk-based evaluation process aligned with maintenance strategies. This study employs a two-phase life cycle assessments (LCA) framework.

View Article and Find Full Text PDF

Management of wind-turbine blade waste as high-content concrete addition: Mechanical performance evaluation and life cycle assessment.

J Environ Manage

January 2025

Department of Civil Engineering, Escuela Politécnica Superior, University of Burgos, c/ Villadiego s/n, 09001, Burgos, Spain. Electronic address:

The management of end-of-life wind-turbine blades in the coming years will be necessary, as a clear solution for their recycling is yet to be found due to their complex composition. The suitability of their mechanical recycling is therefore evaluated in this paper, obtaining Raw-Crushed Wind-Turbine Blade (RCWTB) for subsequent incorporation in high amounts of up to 10% vol. in concrete, replacing the aggregates to achieve Fiber-Reinforced Concrete (FRC).

View Article and Find Full Text PDF

Construction materials are significantly exposed to ecological hazards due to the presence of hazardous chemical constituents found in industrial and agricultural solid wastes. This study aims to investigate the use of sawdust particles (SDPs) and sawdust wastewater (SDW) in alkali-activated composites (AACs) made from a mixture of different silicon-aluminum-based solid wastes (slag powder-SP, red mud-RM, fly ash-FA, and carbide slag-CS). The study examines the impact of SDP content, treated duration of SDPs, and SDW content on both fresh and hardened properties of the AACs, including electrical conductivity, fluidity, density, flexural and compressive strengths, and drying shrinkage.

View Article and Find Full Text PDF

This study introduces an innovative approach to enhancing recycled aggregate concrete (RAC) by incorporating nanosilica (NS) and natural fibers (NF), specifically sisal fiber (SF) and palm fiber (PF). This novel combination aims to overcome the inherent limitations of RAC, such as reduced strength and durability, while promoting sustainability in construction. The research focuses on evaluating the mechanical properties of RAC, including compressive and flexural strengths, through the integration of NS and NF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!