Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Both grid-like firing fields and theta oscillation are hallmarks of grid cells in the mammalian brain. While bump attractor dynamics have generally been recognized as the substrate for grid firing fields, how theta oscillation arises and interacts with persistent activity in a cortical circuit remains obscure. Here, we report that the theta oscillation intrinsically emerges in a continuous attractor network composed of principal neurons and interneurons. Periodic bump attractors and the theta rhythm stably coexist in both cell types due to the division of labor among interneurons via structured synaptic connectivity between principal cells and interneurons. The slow dynamics of NMDAR-mediated synaptic currents support the persistency of bump attractors and restrict the oscillation frequency in the theta band. The spikes of neurons within bump attractors are phase locked to a proxy of local field potential. The current work provides a network-level mechanism that orchestrates the bump attractor dynamics and theta rhythmicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10050492 | PMC |
http://dx.doi.org/10.1016/j.isci.2023.106351 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!