Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hydrophilic functionalized carbon nanotubes (MWCNT-COOH) were developed via hydrothermal glucose-coated carbonization, mixing MWCNTs with glucose in different weight ratios. Methyl violet (MV), methylene blue (MB), alizarin yellow (AY), and methyl orange (MO) were used as dye models for adsorption studies. Comparative dye adsorption capacity onto the pristine (MWCNT-raw) and functionalized (MWCNT-COOH-11) CNTs was evaluated in aqueous solution. These results revealed that MWCNT-raw is capable of adsorbing either anionic or cationic dyes. In contrast, an induced selective cation dye adsorption capacity is significantly enhanced on multivalent hydrophilic MWCNT-COOH, in comparison to a pristine surface. This ability can be tuned to the selective adsorption of cations over anionic dyes or between anionic mixtures from binary systems. An insight into adsorbate-adsorbent interactions shows that hierarchical supramolecular interactions dominate the adsorption processes, which is ascribed to the chemical modification by switching from a hydrophobic to a hydrophilic surface, dye charge, temperature, and potential matching multivalent acceptor/donor capacity between chemical groups in the adsorbent interface. The dye adsorption isotherm and thermodynamics on both surfaces were also studied. Changes in the Gibbs free energy (Δ°), enthalpy (Δ°), and entropy (Δ°) were evaluated. Thermodynamic parameters were endothermic on MWCNT-raw, whereas the adsorption process on MWCNT-COOH-11 revealed that adsorption processes were spontaneous and exothermic, accompanied by a significant reduction of entropy values as a consequence of a multivalent effect. This approach provides an eco-friendly, low-cost alternative for the preparation of supramolecular nanoadsorbents with unprecedented properties to achieve remarkable selective adsorption independent of the presence of intrinsic porosity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10061520 | PMC |
http://dx.doi.org/10.1021/acsomega.2c08203 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!