Here, we investigate the electrochemical properties and stability of 1,1'-ferrocene-bisphosphonates in aqueous solutions. P NMR spectroscopy enables to track decomposition at extreme pH conditions revealing partial disintegration of the ferrocene core in air and under an argon atmosphere. ESI-MS indicates the decomposition pathways to be different in aqueous HPO, phosphate buffer, or NaOH solutions. Cyclovoltammetry exhibits completely reversible redox chemistry of the evaluated bisphosphonates, sodium 1,1'-ferrocene-bis(phosphonate) () and sodium 1,1'-ferrocene-bis(methylphosphonate) (), from pH 1.2 to pH 13. Both the compounds feature freely diffusing species as determined using the Randles-Sevcik analysis. The activation barriers determined by rotating disk electrode measurements revealed asymmetry for oxidation and reduction. The compounds are tested in a hybrid flow battery using anthraquinone-2-sulfonate as the counterside, yielding only moderate performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10061590 | PMC |
http://dx.doi.org/10.1021/acsomega.2c07234 | DOI Listing |
Viruses
December 2024
Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan.
Numerous host factors function as intrinsic antiviral effectors to attenuate viral replication. MARCH8 is an E3 ubiquitin ligase that has been identified as a host restriction factor that inhibits the replication of various viruses. This study elucidated the mechanism by which MARCH8 restricts respiratory syncytial virus (RSV) replication through selective degradation of the viral small hydrophobic (SH) protein.
View Article and Find Full Text PDFViruses
December 2024
Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China.
The ongoing global health crisis caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitates the continuous development of innovative vaccine strategies, especially in light of emerging viral variants that could undermine the effectiveness of existing vaccines. In this study, we developed a recombinant virus-like particle (VLP) vaccine based on the Newcastle Disease Virus (NDV) platform, displaying a stabilized prefusion form of the SARS-CoV-2 spike (S) protein. This engineered S protein includes two proline substitutions (K986P, V987P) and a mutation at the cleavage site (RRAR to QQAQ), aimed at enhancing both its stability and immunogenicity.
View Article and Find Full Text PDFViruses
December 2024
Key Laboratory of Biosafety Defense (Naval Medical University), Ministry of Education, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
Unlike other ubiquitin-like family members, UBL5 is structurally and functionally atypical, and a novel role in various biological processes and diseases has been discovered. UBL5 can stabilize the structure of the spliceosome, can promote post-transcriptional processing, and has been implicated in both DNA damage repair and protein unfolding reactions, as well as cellular mechanisms that are frequently exploited by viruses for their own proliferation during viral infections. In addition, UBL5 can inhibit viral infection by binding to the non-structural protein 3 of rice stripe virus and mediating its degradation.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Clinical Laboratory Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China.
Echinococcosis is a zoonotic infectious disease that poses a significant threat to the health of individuals living in rural regions. While vaccination represents a potential strategy for disease prevention, there is currently no effective vaccine available for humans to prevent cystic echinococcosis (CE). This study aimed to design a novel multi-epitope vaccine (MEV) against Echinococcus granulosus for human use, employing immunoinformatics methods.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Johnson & Johnson, Janssen Vaccines & Prevention, 2333 CN Leiden, The Netherlands.
Unlabelled: Human metapneumovirus (HMPV) is a significant respiratory pathogen, particularly in vulnerable populations.
Background: No vaccine for the prevention of HMPV is currently licensed, although several subunit vaccines are in development. Saponin-based adjuvant systems (AS), including QS-21, have transformed the field of subunit vaccines by dramatically increasing their potency and efficacy, leading to the development of several licensed vaccines.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!