Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Removal of organic dyes from water by monolithic adsorbents is considered as an efficient and no-secondary pollution method. Herein, for the first time cordierite honeycomb ceramics (COR) treated with oxalic acid (CORA) were synthesized. This CORA exhibits outstanding removal efficiency toward the azo neutral red dyes (NR) from water. After optimizing the reaction conditions, the highest adsorption capacity of 7.35 mg·g and a removal rate of 98.89% could be achieved within 300 min. Furthermore, investigation of the adsorption kinetics indicated this adsorption process could be described as a pseudo-second-order kinetic model with and of 0.0114 g·mg·min and 6.94 mg·g, respectively. According to the fitting calculation, the adsorption isotherm could also be described as the Freundlich isotherm model. The removal efficiency could be maintained above 50% after 4 cycles, negating the need for toxic organic solvent extraction, offering a method for bringing the technology one step closer to industrial application and giving CORA promising potential in practical water treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10061635 | PMC |
http://dx.doi.org/10.1021/acsomega.3c00305 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!