The phase formation of complex pyrochlores (space group -3) BiMg(Zn) Ni TaO was investigated during solid-phase synthesis. It was found that the pyrochlore phase precursor in all cases was α-BiTaO. The pyrochlore phase synthesis reaction proceeds mainly at temperatures above 850-900 °C and consists in the interaction of bismuth orthotantalate with a transition element oxide. The influence of magnesium and zinc on the course of pyrochlore synthesis was revealed. The reaction temperatures of magnesium and nickel (800 and 750 °C, respectively) were determined. The change in the pyrochlore unit cell parameter depending on the synthesis temperature was analyzed for both systems. Nickel-magnesium pyrochlores are characterized by a porous dendrite-like microstructure with a grain size of 0.5-1.0 microns, and the porosity of the samples reaches 20 percent. The calcination temperature does not significantly affect the microstructure of the samples. Prolonged calcination of the preparations leads to the coalescence of grains with the formation of larger particles. Nickel oxide has a sintering effect on ceramics. The studied nickel-zinc pyrochlores are characterized by a low-porous dense microstructure. The porosity of the samples does not exceed 10%. The optimal conditions for obtaining phase-pure pyrochlores (1050 °C and 15 h) were determined.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10061534 | PMC |
http://dx.doi.org/10.1021/acsomega.3c00090 | DOI Listing |
Sci Rep
December 2024
Department of Chemistry and Biochemistry, Centre for Research in Molecular Modeling (CERMM), Concordia University, 7141 Sherbrooke Street West, Montréal, QC, H4B 1R6, Canada.
Nitroglycerin is a potent vasodilator in clinical use since the late 1800s. It functions as a prodrug that is bioactivated by formation of an enzyme-based thionitrate, E-Cys-NO. This intermediate reportedly decomposes to release NO and NO but their relative yields remain controversial.
View Article and Find Full Text PDFBAY 2413555 is a novel selective and reversible positive allosteric modulator of the type 2 muscarinic acetylcholine (M2) receptor, aimed at enhancing parasympathetic signaling and restoring cardiac autonomic balance for the treatment of heart failure (HF). This study tested the safety, tolerability and pharmacokinetics of this novel therapeutic option. REMOTE-HF was a multicenter, double-blind, randomized, placebo-controlled, phase Ib dose-titration study with two active arms.
View Article and Find Full Text PDFNat Commun
December 2024
Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
The autophagy pathway regulates the degradation of misfolded proteins caused by heat stress (HS) in the cytoplasm, thereby maintaining cellular homeostasis. Although previous studies have established that autophagy (ATG) genes are transcriptionally upregulated in response to HS, the precise regulation of ATG proteins at the subcellular level remains poorly understood. In this study, we provide compelling evidence for the translocation of key autophagy components, including the ATG1/ATG13 kinase complex (ATG1a, ATG13a), PI3K complex (ATG6, VPS34), and ATG8-PE system (ATG5), to HS-induced stress granules (SGs) in Arabidopsis thaliana.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA.
Pluripotent stem cells possess a unique nuclear architecture characterized by a larger nucleus and more open chromatin, which underpins their ability to self-renew and differentiate. Here, we show that the nucleolus-specific RNA helicase DDX18 is essential for maintaining the pluripotency of human embryonic stem cells. Using techniques such as Hi-C, DNA/RNA-FISH, and biomolecular condensate analysis, we demonstrate that DDX18 regulates nucleolus phase separation and nuclear organization by interacting with NPM1 in the granular nucleolar component, driven by specific nucleolar RNAs.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin-si, Republic of Korea.
Self-assembled configurations are versatile for applications in which liquid-mediated phenomena are employed to ensure that static or mild physical interactions between assembling blocks take advantage of local energy minima. For granular materials, however, a particle's momentum in air leads to random collisions and the formation of disordered phases, eventually producing jammed configurations when densely packed. Therefore, unlike fluidic self-assembly, the self-assembly of dry particles typically lacks programmability based on density and ordering symmetry and has thus been limited in applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!