Objective: To develop a radiomics nomogram model based on time-of-flight magnetic resonance angiography (TOF-MRA) images for preoperative prediction of true microaneurysms.

Methods: 118 patients with Intracranial Aneurysm Sac (40 positive and 78 negative) were enrolled and allocated to training and validation groups (8:2 ratio). Findings of clinical characteristics and MRA features were analyzed. A radiomics signature was built on the basis of reproducible features by using the least absolute shrinkage and selection operator (LASSO) regression algorithm in the training group. The radiomics nomogram model was constructed by combining clinical risk factors and radiomics signature. In order to compare the classification performance of clinical models, radiomics model and radiomics nomogram model, AUC was used to evaluate them. The performance of the radiomics nomogram model was evaluated by calibration curve and decision curve analysis.

Results: Eleven features were selected to develop radiomics model with AUC of 0.875 (95% CI 0.78-0.97), sensitivity of 0.84, and specificity of 0.68. The radiomics model achieved a better diagnostic performance than the clinic model (AUC = 0.75, 95% CI: 0.53-0.97) and even radiologists. The radiomics nomogram model, which combines radiomics signature and clinical risk factors, is effective too (AUC = 0.913, 95% CI: 0.87-0.96). Furthermore, the decision curve analysis demonstrated significantly better net benefit in the radiomics nomogram model.

Conclusion: Radiomics features derived from TOF-MRA can reliably be used to build a radiomics nomogram model for effectively differentiating between pseudo microaneurysms and true microaneurysms, and it can provide an objective basis for the selection of clinical treatment plans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10065425PMC
http://dx.doi.org/10.2147/IJGM.S397134DOI Listing

Publication Analysis

Top Keywords

radiomics nomogram
32
nomogram model
28
radiomics
15
radiomics model
12
model auc
12
model
11
model based
8
tof-mra images
8
develop radiomics
8
radiomics signature
8

Similar Publications

Objectives: To develop a nomogram based on the radiomics features of tumour and perigastric adipose tissue adjacent to the tumor in dual-layer spectral detector computed tomography (DLCT) for lymph node metastasis (LNM) prediction in gastric cancer (GC).

Methods: A retrospective analysis was conducted on 175 patients with gastric adenocarcinoma. They were divided into training cohort (n = 125) and validation cohort (n = 50).

View Article and Find Full Text PDF

Objective: Craniopharyngiomas are rare, benign brain tumors that are primarily treated with surgery. Although the extended endoscopic endonasal approach (EEEA) has evolved as a more reliable surgical alternative and yields better visual outcomes than traditional craniotomy, postoperative visual deterioration remains one of the most common complications, and relevant risk factors are still poorly defined. Hence, identifying risk factors and developing a predictive model for postoperative visual deterioration is indeed necessary.

View Article and Find Full Text PDF

Purpose: The aim of this study was to explore and develop a preoperative and noninvasive model for predicting spread through air spaces (STAS) status in lung adenocarcinoma (LUAD) with diameter ≤ 3 cm.

Methods: This multicenter retrospective study included 640 LUAD patients. Center I included 525 patients (368 in the training cohort and 157 in the validation cohort); center II included 115 patients (the test cohort).

View Article and Find Full Text PDF

Introduction: This study predicted HRD score and status based on intra- and peritumoral radiomics in patients with ovarian cancer (OC) for better guiding the use of PARPi in clinical.

Methods: A total of 106 and 95 patients with OC were included between January 2022 and November 2023 for predicting HRD score and status, respectively. Radiomics features were extracted and quantitatively analyzed from intra- and peri-tumor regions in the CT image.

View Article and Find Full Text PDF

Purpose: To develop and validate a radiomics nomogram model for predicting the micropapillary pattern (MPP) in lung adenocarcinoma (LUAD) tumors of ≤2 cm in size.

Methods: In this study, 300 LUAD patients from our institution were randomly divided into the training cohort (n = 210) and an internal validation cohort (n = 90) at a ratio of 7:3, besides, we selected 65 patients from another hospital as the external validation cohort. The region of interest of the tumor was delineated on the computed tomography (CT) images, and radiomics features were extracted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!