The NASA Ionospheric Connection Explorer (ICON) was launched in October 2019 and has been observing the upper atmosphere and ionosphere to understand the sources of their strong variability, to understand the energy and momentum transfer, and to determine how the solar wind and magnetospheric effects modify the internally-driven atmosphere-space system. The Far Ultraviolet Instrument (FUV) supports these goals by observing the ultraviolet airglow in day and night, determining the atmospheric and ionospheric composition and density distribution. Based on the combination of ground calibration and flight data, this paper describes how major instrument parameters have been verified or refined since launch, how science data are collected, and how the instrument has performed over the first 3 years of the science mission. It also provides a brief summary of science results obtained so far.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10049961PMC
http://dx.doi.org/10.1007/s11214-023-00969-9DOI Listing

Publication Analysis

Top Keywords

ultraviolet instrument
8
instrument fuv
8
flight performance
4
performance ultraviolet
4
instrument
4
fuv icon
4
icon nasa
4
nasa ionospheric
4
ionospheric connection
4
connection explorer
4

Similar Publications

Direct printed aligners (DPAs) offer benefits like the ability to vary layer thickness within a single DPA and to 3D print custom-made removable orthodontic appliances. The biocompatibility of appliances made from Tera Harz TA-28 (Graphy Inc., Seoul, South Korea) depends on strict adherence to a standardized production and post-production protocol, including UV curing.

View Article and Find Full Text PDF

Silicon carbide (SiC) has significant potential as a third-generation semiconductor material due to its exceptional thermal and electronic properties, yet its high hardness and brittleness make processing costly and complex. This study introduces ultraviolet laser ablation as a method for direct SiC material removal, investigating the effects of varying scanning speeds on surface composition, hardness, and ablation depth. The results indicate optimal processing speeds for the Si and C faces at 200 mm/s and 100 mm/s, respectively.

View Article and Find Full Text PDF

The development of bionic organ-on-a-chip technology relies heavily on advancements in in situ sensors and biochip packaging. By integrating precise biological and fluid condition sensing with microfluidics and electronic components, long-term dynamic closed-loop culture systems can be achieved. This study aims to develop biocompatible heterogeneous packaging and laser surface modification techniques to enable the encapsulation of electronic components while minimizing their impact on fluid dynamics.

View Article and Find Full Text PDF

We demonstrate a high-performance ultrafast broadband time-resolved photoluminescence (TRPL) system based on the transient grating photoluminescence spectroscopy (TGPLS) technique. The core of the system is a Kerr effect-induced transient grating (TG) optical gate driven by high repetition rate ultrashort laser pulses at 1030 nm with micro-Joule pulse energy. Satisfying the demands of spectroscopy applications, the setup achieves high sensitivity, rapid data acquisition, ultrafast time resolution, and a wide spectral window from ultraviolet to near-infrared.

View Article and Find Full Text PDF

Effects of laser wavelength and pulse energy on the evaporation behavior of TiN coatings in atom probe tomography: A multi-instrument study.

Ultramicroscopy

January 2025

Christian Doppler Laboratory for Sustainable Hard Coatings at the Department of Materials Science, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700 Leoben, Austria.

The impact of the laser wavelength on accuracy in elemental composition analysis in atom probe tomography (APT) was investigated. Three different commercial atom probe systems - LEAP 3000X HR, LEAP 5000 XR, and LEAP 6000 XR - were systematically compared for a TiN model coating studying the effect of shorter laser wavelengths, especially in the deep ultraviolet (DUV) range, on the evaporation behavior. The findings demonstrate that the use of shorter wavelengths enhances the accuracy in elemental composition, while maintaining similar electric field strengths.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!