Lytic polysaccharide monooxygenases (LPMO) are expected to change the current status of chitin resource utilization. This study reports that targeted enrichment of the microbiota was performed with chitin by the selective gradient culture technique, and a novel LPMO (M2822) was identified from the enrichment microbiota metagenome. First, soil samples were screened based on soil bacterial species and chitinase biodiversity. Then gradient enrichment culture with different chitin concentrations was carried out. The efficiency of chitin powder degradation was increased by 10.67 times through enrichment, and chitin degradation species and were enriched significantly. A novel LPMO (M2822) was found in the metagenome of the enriched microbiota. Phylogenetic analysis showed that M2822 had a unique phylogenetic position in auxiliary activity (AA) 10 family. The analysis of enzymatic hydrolysate showed that M2822 had chitin activity. When M2822 synergized with commercial chitinase to degrade chitin, the yield of -acetyl glycosamine was 83.6% higher than chitinase alone. The optimum temperature and pH for M2822 activity were 35°C and 6.0. The synergistic action of M2822 and chitin-degrading enzymes secreted by sp. LZ32 could efficiently hydrolyze shrimp shell powder. After 12 h of enzymatic hydrolysis, chitin oligosaccharides (COS) yield reached 4,724 μg/mL. To our knowledge, this work is the first study to mine chitin activity LPMO in the metagenome of enriched microbiota. The obtained M2822 showed application prospects in the efficient production of COS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057547 | PMC |
http://dx.doi.org/10.3389/fmicb.2023.1097492 | DOI Listing |
Blood
December 2024
Central South University, Changsha, China.
Multiple myeloma (MM)-induced bone disease affects not only patients' quality of life but also their overall survival. Our previous work demonstrated that the gut microbiome plays a crucial role in MM progression and drug resistance. However, the role of altered gut microbiota in MM bone disease remains unclear.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
Background: Alzheimer's Disease (AD) is the most common form of dementia, and therapies that effectively halt disease progression are lacking. Short chain fatty acids (SCFAs), including acetate, propionate, and butyrate, are abundant gut bacterial metabolites produced via fermentation of dietary fibers and resistant starch. There is growing evidence that SCFAs may affect key neuropathological processes underlying AD, but their role is not well established.
View Article and Find Full Text PDFFront Microbiol
December 2024
The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
Identifying the signatures of intestinal dysbiosis caused by common stresses is fundamental to establishing efficient health monitoring strategies for sea cucumber. This study investigated the impact of six common stress experienced frequently in aquaculture on the growth performance, intestinal homeostasis and microbiota of sea cucumber, including thermal (23°C), hypoosmotic (22‰ salinity), ammonium (0.5 mg/L NH -N), and nitrite (0.
View Article and Find Full Text PDFNat Metab
January 2025
Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
Transmembrane-6 superfamily member 2 (TM6SF2) regulates hepatic fat metabolism and is associated with metabolic dysfunction-associated steatohepatitis (MASH). TM6SF2 genetic variants are associated with steatotic liver disease. The pathogenesis of MASH involves genetic factors and gut microbiota alteration, yet the role of host-microbe interactions in MASH development remains unclear.
View Article and Find Full Text PDFFood Res Int
January 2025
College of Bioengineering, Tianjin University of Science and Technology, Thirteenth Street, Binhai New District, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Thirteenth Street, Binhai New District, Tianjin 300457, China; Liquor Making Biological Technology and Application of Key Laboratory of Sichuan Province, Sichuan, China. Electronic address:
N-propanol is one of the higher alcohols, a moderate amount of n-propanol is beneficial for the harmony of the liquor body, whereas excessive or repeated intake will lead to discomfort and pose significant harm to human health. In actual production process of Jiangxiangxing Baijiu, the n-propanol content of the base baijiu in first round (FR) is far higher than that of second round (SR). Nevertheless, the formation mechanism and the key n-propanol producing microbials remain unclear and this limits the quality control of baijiu fermentation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!