The CRISPR/Cas9 system is a genome-editing tool that allows for precise and efficient modifications to the DNA of a cell. This technology can be used in endophytic fungi, which live within plants and can have beneficial effects on their host, making them important for agriculture. Using CRISPR/Cas9, researchers can introduce specific genetic changes into endophytic fungal genomes, allowing them to study the function of genes, improve their plant-growth-promoting properties, and create new, more beneficial endophytes. This system works by using the Cas9 protein, which acts as a pair of molecular scissors, to cut DNA at specific locations determined by a guide RNA. Once the DNA is cut, the cell's natural repair mechanisms can be used to insert or delete specific genes, allowing for precise editing of the fungal genome. This article discusses the mechanism and applications of CRISPR/Cas9 to fungal endophytes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10060627 | PMC |
http://dx.doi.org/10.3389/fmicb.2023.1146650 | DOI Listing |
Microb Pathog
January 2025
High School of Technology Laayoune, Ibn Zohr University, Morocco.
Plant-microbe partnerships constitute a complex and intricately woven network of connections that have evolved over countless centuries, involving both cooperation and antagonism. In various contexts, plants and microorganisms engage in mutually beneficial partnerships that enhance crop health and maintain balance in ecosystems. However, these associations also render plants susceptible to a range of pathogens.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Department of Environmental Engineering, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, South Korea.
Endophytes have significant prospects for applications beyond their existing utilization in agriculture and the natural sciences. They form an endosymbiotic relationship with plants by colonizing the root tissues without detrimental effects. These endophytes comprise several microorganisms, including bacteria and fungi.
View Article and Find Full Text PDFMycorrhiza
January 2025
State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
Most cold-season grasses can be colonized by belowground arbuscular mycorrhizal (AM) fungi and foliar grass endophytes (Epichloë) simultaneously while also be attacked by insect herbivores. The colonization of AM fungi or the presence of grass endophytes is associated with increased resistance by the host plant. However, studies on how these two symbionts affect host plants and mitigate insect pest attack are currently lacking.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Centro de Ecología Integrativa (CEI), Universidad de Talca, Talca, Chile.
Antarctica has one of the most sensitive ecosystems to the negative effects of Persistent Organic Pollutants (POPs) on its biodiversity. This is because of the lower temperatures and the persistence of POPs that promote their accumulation or even biomagnification. However, the impact of POPs on vascular plants is unknown.
View Article and Find Full Text PDFJ Exp Pharmacol
January 2025
University Center of Excellence for Nutraceuticals, Bioscience and Biotechnology Research Center, Bandung Institute of Technology, Bandung, West Java, Indonesia.
Purpose: A promising feature of marine sponges is the potential anticancer efficacy of their secondary metabolites. The objective of this study was to explore the anticancer activities of compounds from the fungal symbiont of on breast cancer cells.
Methods: In the present research, , an endophytic fungal strain derived from the marine sponge was successfully isolated and characterized.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!