Spike (S) protein, a homotrimeric glycoprotein, is the most important antigen target for SARS-CoV-2 vaccines. A complete simulation of the advanced structure of this homotrimer during subunit vaccine development is the most likely method to improve its immunoprotective effects. In this study, preparation strategies for the S protein receptor-binding domain, S1 region, and ectodomain trimer nanoparticles were designed using ferritin nanoparticle self-assembly technology. The Bombyx mori baculovirus expression system was used to prepare three nanoparticle vaccines with high expression levels recorded in silkworms. The results in mice showed that the nanoparticle vaccine prepared using this strategy could induce immune responses when administered via both the subcutaneous administration and oral routes. Given the stability of these ferritin-based nanoparticle vaccines, an easy-to-use and low-cost oral immunization strategy can be employed in vaccine blind areas attributed to shortages of ultralow-temperature equipment and medical resources in underdeveloped areas. Oral vaccines are also promising candidates for limiting the spread of SARS-CoV-2 in domestic and farmed animals, especially in stray and wild animals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10038678 | PMC |
http://dx.doi.org/10.1016/j.procbio.2023.03.026 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou 215125, China.
The emergence of mRNA vaccines offers great promise and a potent platform in combating various diseases, notably COVID-19. Nevertheless, challenges such as inherent instability and potential side effects of current delivery systems underscore the critical need for the advancement of stable, safe, and efficacious mRNA vaccines. In this study, a robust mRNA vaccine (cmRNA-1130) eliciting potent immune activation has been developed from a biodegradable lipid with eight ester bonds in the branched tail (AX4) and synthetic circular mRNA (cmRNA) encoding the trimeric Delta receptor binding domain of the SARS-CoV-2 spike protein.
View Article and Find Full Text PDFMol Biotechnol
January 2025
Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia.
The etiological agent for the coronavirus disease 2019 (COVID-19), the SARS-CoV-2, caused a global pandemic. Although mRNA, viral-vectored, DNA, and recombinant protein vaccine candidates were effective against the SARS-CoV-2 Wuhan strain, the emergence of SARS-CoV-2 variants of concern (VOCs) reduced the protective efficacies of these vaccines. This necessitates the need for effective and accelerated vaccine development against mutated VOCs.
View Article and Find Full Text PDFMol Biomed
January 2025
Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
Cancer vaccines, crucial in the immunotherapeutic landscape, are bifurcated into preventive and therapeutic types, both integral to combating oncogenesis. Preventive cancer vaccines, like those against HPV and HBV, reduce the incidence of virus-associated cancers, while therapeutic cancer vaccines aim to activate dendritic cells and cytotoxic T lymphocytes for durable anti-tumor immunity. Recent advancements in vaccine platforms, such as synthetic peptides, mRNA, DNA, cellular, and nano-vaccines, have enhanced antigen presentation and immune activation.
View Article and Find Full Text PDFACS Nano
January 2025
National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China.
Cancer vaccines utilizing nanoparticle (NP) structures that integrate antigens and adjuvants to enhance delivery and stimulate immune responses are emerging as a promising avenue in cancer immunotherapy. However, the development of cancer vaccines has been significantly hindered by the low immunogenicity of tumor antigens. To address this challenge, substantial efforts have been made in developing innovative adjuvants to elicit effective immune responses.
View Article and Find Full Text PDFAntiviral Res
January 2025
Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Institute for Global Health and Translational Sciences, State University of New York Upstate Medical University, Syracuse, NY 13210, USA. Electronic address:
Dengue virus (DENV) is a rapidly expanding infectious disease threat that causes an estimated 100 million symptomatic infections every year. A barrier to preventing DENV infections with traditional vaccines or prophylactic monoclonal antibody (mAb) therapies is the phenomenon of Antibody-Dependent Enhancement (ADE), wherein sub-neutralizing levels of DENV-specific IgG antibodies can enhance infection and pathogenesis rather than providing protection from disease. Fortunately, IgG is not the only antibody isotype capable of binding and neutralizing DENV, as DENV-specific IgA1 isotype mAbs can bind and neutralize DENV while without exhibiting any ADE activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!