Glycosaminoglycans (GAGs) are complex polysaccharides exhibiting a vast structural diversity and fulfilling various functions mediated by thousands of interactions in the extracellular matrix, at the cell surface, and within the cells where they have been detected in the nucleus. It is known that the chemical groups attached to GAGs and GAG conformations comprise "glycocodes" that are not yet fully deciphered. The molecular context also matters for GAG structures and functions, and the influence of the structure and functions of the proteoglycan core proteins on sulfated GAGs and vice versa warrants further investigation. The lack of dedicated bioinformatic tools for mining GAG data sets contributes to a partial characterization of the structural and functional landscape and interactions of GAGs. These pending issues will benefit from the development of new approaches reviewed here, namely (i) the synthesis of GAG oligosaccharides to build large and diverse GAG libraries, (ii) GAG analysis and sequencing by mass spectrometry (, ion mobility-mass spectrometry), gas-phase infrared spectroscopy, recognition tunnelling nanopores, and molecular modeling to identify bioactive GAG sequences, biophysical methods to investigate binding interfaces, and to expand our knowledge and understanding of glycocodes governing GAG molecular recognition, and (iii) artificial intelligence for in-depth investigation of GAGomic data sets and their integration with proteomics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10052243PMC
http://dx.doi.org/10.1021/jacsau.2c00569DOI Listing

Publication Analysis

Top Keywords

gag
8
data sets
8
glycosaminoglycans remains
4
remains deciphered?
4
deciphered? glycosaminoglycans
4
gags
4
glycosaminoglycans gags
4
gags complex
4
complex polysaccharides
4
polysaccharides exhibiting
4

Similar Publications

The coiled-coil protein carrier structure affects the activation of certain endocytosis pathways.

RSC Adv

January 2025

Graduate School of Environmental Symbiotic System Major, Nippon Institute of Technology 4-1 Gakuendai, Miyashiro Saitama 345-8501 Japan.

Coiled-coil protein carrier (CCPC) 140 is a rigid and anisotropically structured cationic coiled-coil artificial protein that has displayed up to a 1000 times higher level of cellular internalization activity than that of unstructured cell-penetrating peptides. Previous studies have demonstrated that CCPC 140's rigid and anisotropic structural properties and cationic surface properties are important for its superior cellular internalization activity. In this study, we investigated whether each physicochemical characteristic of CCPC 140 effectively contributed to activating the cellular internalization pathway.

View Article and Find Full Text PDF

In the context of bone fractures, the influence of the mechanical environment on the healing outcome is widely accepted, while its influence at the cellular level is still poorly understood. This study explores the influence of mechanical load on naïve mesenchymal stem cell (MSC) differentiation, focusing on hypertrophic chondrocyte differentiation. Unlike primary bone healing, which involves the direct differentiation of MSCs into bone-forming cells, endochondral ossification uses an intermediate cartilage template that remodels into bone.

View Article and Find Full Text PDF

Background: In India, approximately 3.5 million children are affected by Developmental Delay (DD), often stemming from preterm births. These delays contribute to neurological and motor development delays, placing a significant financial burden on families.

View Article and Find Full Text PDF

Purpose: Identifying factors that disrupt cooperation during radiographic examination, such as dental fear and the gag reflex, is crucial for achieving optimal radiographic outcomes. The aim of the present study is to evaluate the levels of dental fear and cooperation amongst children aged 4-9 years undergoing intraoral radiographic examination at different stages of dental treatment. It also investigates the impact of the gag reflex on children's behaviour during intraoral radiographic examination.

View Article and Find Full Text PDF

Modifications to rhesus macaque TCR constant regions improve TCR cell surface expression.

PLoS One

January 2025

AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America.

T cell immunotherapy success is dependent on effective levels of antigen receptor expressed at the surface of engineered cells. Efforts to optimize surface expression in T cell receptor (TCR)-based therapeutic approaches include optimization of cellular engineering methods and coding sequences, and reducing the likelihood of exogenous TCR α and β chains mispairing with the endogenous TCR chains. Approaches to promote correct human TCR chain pairing include constant region mutations to create an additional disulfide bond between the two chains, full murinization of the constant region of the TCR α and β sequences, and a minimal set of murine mutations to the TCR α and β constant regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!