A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Novel methods for elucidating modality importance in multimodal electrophysiology classifiers. | LitMetric

Novel methods for elucidating modality importance in multimodal electrophysiology classifiers.

Front Neuroinform

The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States.

Published: March 2023

Introduction: Multimodal classification is increasingly common in electrophysiology studies. Many studies use deep learning classifiers with raw time-series data, which makes explainability difficult, and has resulted in relatively few studies applying explainability methods. This is concerning because explainability is vital to the development and implementation of clinical classifiers. As such, new multimodal explainability methods are needed.

Methods: In this study, we train a convolutional neural network for automated sleep stage classification with electroencephalogram (EEG), electrooculogram, and electromyogram data. We then present a global explainability approach that is uniquely adapted for electrophysiology analysis and compare it to an existing approach. We present the first two local multimodal explainability approaches. We look for subject-level differences in the local explanations that are obscured by global methods and look for relationships between the explanations and clinical and demographic variables in a novel analysis.

Results: We find a high level of agreement between methods. We find that EEG is globally the most important modality for most sleep stages and that subject-level differences in importance arise in local explanations that are not captured in global explanations. We further show that sex, followed by medication and age, had significant effects upon the patterns learned by the classifier.

Discussion: Our novel methods enhance explainability for the growing field of multimodal electrophysiology classification, provide avenues for the advancement of personalized medicine, yield unique insights into the effects of demographic and clinical variables upon classifiers, and help pave the way for the implementation of multimodal electrophysiology clinical classifiers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10050434PMC
http://dx.doi.org/10.3389/fninf.2023.1123376DOI Listing

Publication Analysis

Top Keywords

multimodal electrophysiology
12
novel methods
8
explainability methods
8
clinical classifiers
8
multimodal explainability
8
subject-level differences
8
differences local
8
local explanations
8
explainability
7
multimodal
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!