Background: Recent studies have shown that the infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is reduced under alkaline conditions. The purpose of this study is to assess the effect of nasal irrigation and oral rinse with sodium bicarbonate solution on virus clearance among COVID-19 patients.

Materials And Methods: COVID-19 patients were recruited and randomly divided into two group, i.e., the experimental group and the control group. The experimental group received regular care plus nasal irrigation and oral rinse with 5% sodium bicarbonate solution, while the control group only received regular care. Nasopharyngeal and oropharyngeal swab samples were collected daily for reverse transcription-polymerase chain reaction (RT-PCR) assays. The negative conversion time and hospitalization time of the patients were recorded, and the results were statistically analyzed.

Results: A total of 55 COVID-19 patients with mild or moderate symptoms were included in our study. There was no significant difference in gender, age and health status between the two groups. The average negative conversion time was 1.63 days after treatment with sodium bicarbonate, and the average hospitalization time of the control group and the experimental group were 12.53 and 7.7 days, respectively.

Conclusions: Nasal irrigation and oral rinse with 5% sodium bicarbonate solution is effective in virus clearance for COVID-19 patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053493PMC
http://dx.doi.org/10.3389/fpubh.2023.1145669DOI Listing

Publication Analysis

Top Keywords

sodium bicarbonate
20
nasal irrigation
16
irrigation oral
16
oral rinse
16
rinse sodium
16
bicarbonate solution
16
covid-19 patients
16
virus clearance
12
clearance covid-19
12
group experimental
12

Similar Publications

Background: This study aims to identify the factors influencing the risk of lactic acidosis (LA) in patients with ischemic stroke (IS) and to develop a predictive model for assessing the risk of LA in IS patients during their stay in the intensive care unit (ICU).

Methods: A retrospective cohort design was employed, with data collected from the Medical Information Mart for Intensive Care (MIMIC)-III and MIMIC-IV databases spanning from 2001 to 2019. LA was defined as pH < 7.

View Article and Find Full Text PDF

Groundwater arsenic (As), contamination is a significant issue worldwide including China and Pakistan, particularly in canal command areas. In this study, 131 groundwater samples were collected, and three machine learning models [Random Forest (RF), Logistic Regression (LR), and Artificial Neural Network (ANN)] were employed to predict As concentration. Descriptive statistics helped to conclude that all of the samples were inside the permitted limit of WHO for pH, Ca, Mg, Turbidity, Cl, K, Na, SO, NO, F and beyond limit of WHO for EC, HCO, TDS, and As.

View Article and Find Full Text PDF

Introduction: Persistent throat symptoms (PTS) are indicators for over 60 000 new patient referrals to NHS secondary care annually. PTS have been attributed to manifestation of gastro-oesophageal reflux disease (GORD) with the hypothesis that gastric refluxate damages and irritates the mucosa of the upper aerodigestive tract. Symptoms of PTS and GORD are commonly treated with proton pump inhibitors (PPIs) or alginates are often, incorrectly, advocated.

View Article and Find Full Text PDF

Background: Ventilator-associated pneumonia (VAP) is a common nosocomial infection in ICU, significantly associated with poor outcomes. However, there is currently a lack of reliable and interpretable tools for assessing the risk of in-hospital mortality in VAP patients. This study aims to develop an interpretable machine learning (ML) prediction model to enhance the assessment of in-hospital mortality risk in VAP patients.

View Article and Find Full Text PDF

Methanol is a widely used industrial and household alcohol that poses significant health risks upon exposure. Despite its extensive use, methanol poisoning remains a critical public health concern globally, often resulting from accidental or intentional ingestion and outbreaks linked to contaminated beverages. Methanol toxicity stems from its metabolic conversion to formaldehyde and formic acid, leading to severe metabolic acidosis and multiorgan damage, including profound CNS effects and visual impairments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!