Immune checkpoint blockade therapy is an important advance in cancer treatment, and the representative drugs (PD-1/PD-L1 antibodies) have greatly improved clinical outcomes in various human cancers. However, since many patients still experience primary resistance, they do not respond to anti-PD1/PD-L1 therapy, and some responders also develop acquired resistance after an initial response. Therefore, combined therapy with anti-PD-1/PD-L1 immunotherapy may result in better efficacy than monotherapy. In tumorigenesis and tumor development processes, the mutual regulation of autophagy and tumor immune escape is an intrinsic factor of malignant tumor progression. Understanding the correlation between the tumor autophagy pathway and tumor immune escape may help identify new clinical cancer treatment strategies. Since both autophagy and immune escape of tumor cells occur in a relatively complex microenvironmental network, autophagy affects the immune-mediated killing of tumor cells and immune escape. Therefore, comprehensive treatment targeting autophagy and immune escape to achieve "immune normalization" may be an important direction for future research and development. The PD-1/PD-L1 pathway is essential in tumor immunotherapy. High expression of PD-L1 in different tumors is closely related to poor survival rates, prognoses, and treatment effects. Therefore, exploring the mechanism of PD-L1 expression is crucial to improve the efficacy of tumor immunotherapy. Here, we summarize the mechanism and mutual relationship between autophagy and PD-L1 in antitumor therapy, which may help enhance current antitumor immunotherapy approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10050383 | PMC |
http://dx.doi.org/10.3389/fimmu.2023.1093558 | DOI Listing |
The significance of endogenous immune surveillance in acute lymphoblastic leukemia (ALL) remains controversial. Using clinical B-ALL samples and a novel mouse model, we show that neoantigen-specific CD4+ T cells are induced to adopt type-1 regulatory (Tr1) function in the leukemia microenvironment. Tr1s then inhibit cytotoxic CD8+ T cells, preventing effective leukemia clearance.
View Article and Find Full Text PDFThe growing body of experimental and computational studies suggested that the cross-neutralization antibody activity against Omicron variants may be driven by balance and tradeoff of multiple energetic factors and interaction contributions of the evolving escape hotspots involved in antigenic drift and convergent evolution. However, the dynamic and energetic details quantifying the balance and contribution of these factors, particularly the balancing nature of specific interactions formed by antibodies with the epitope residues remain scarcely characterized. In this study, we performed molecular dynamics simulations, ensemble-based deep mutational scanning of SARS-CoV-2 spike residues and binding free energy computations for two distinct groups of broadly neutralizing antibodies : E1 group (BD55-3152, BD55-3546 and BD5-5840) and F3 group (BD55-3372, BD55-4637 and BD55-5514).
View Article and Find Full Text PDFUnlabelled: The T cell receptor (TCR) repertoire of intestinal CD4+ T cells is enriched for specificity towards microbiome-encoded epitopes shared among many microbiome members, providing broad microbial reactivity from a limited pool of cells. These cells actively coordinate mutualistic host-microbiome interactions, yet many epitopes are shared between gut symbionts and closely related pathobionts and pathogens. Given the disparate impacts of these agents on host health, intestinal CD4+ T cells must maintain strain-level discriminatory power to ensure protective immunity while preventing inappropriate responses against symbionts.
View Article and Find Full Text PDFTumor heterogeneity is the substrate for tumor evolution and the linchpin of treatment resistance. Cancer cell heterogeneity is largely attributed to distinct genetic changes within each cell population. However, the widespread epigenome repatterning that characterizes most cancers is also highly heterogenous within tumors and could generate cells with diverse identities and malignant features.
View Article and Find Full Text PDFFront Immunol
January 2025
Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
Background: Squalene epoxidase (SQLE) is a key enzyme in cholesterol biosynthesis and has been shown to negatively affect tumor immunity and is associated with poor outcomes of immunotherapy in various cancers. While most research in this area has focused on the impact of cholesterol on immune functions, the influence of SQLE-mediated squalene metabolism within the tumor immune microenvironment (TIME) remains unexplored.
Methods: We established an immune-competent mouse model (C57BL/6) bearing mouse pancreatic cancer xenografts (KPC cells) with or without stable SQLE-knockdown (SQLE-KD) to evaluate the impact of SQLE-mediated metabolism on pancreatic cancer growth and immune functions.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!