AI Article Synopsis

  • - Malignant pleural mesothelioma (MPM) is a rare and aggressive cancer with limited treatment options, prompting the need for innovative therapies like immune effector cell-based treatments.
  • - Researchers expanded γδ T cells from blood samples of healthy donors and MPM patients, testing their effectiveness against MPM cells using various assays, which indicated a moderate cytotoxic response.
  • - These γδ T cells demonstrated three distinct mechanisms of action against MPM cells—through natural killer (NK) receptors, T cell receptors (TCRs), and CD16—suggesting their potential as a novel therapeutic approach in treating MPM.

Article Abstract

Introduction: Malignant pleural mesothelioma (MPM) is a rare and highly aggressive thoracic tumor with poor prognosis and limited therapeutic options. Although immune checkpoint inhibitors exhibit a promising effect in some patients with unresectable MPM in clinical trials, the majority of MPM patients show only modest response rates to the currently available treatments. It is thus imperative to develop novel and innovative therapeutic modalities for MPM, including immune effector cell-based therapies.

Methods: γδ T cells were expanded using tetrakis-pivaloyloxymethyl 2-(thiazole-2-ylamino) ethylidene-1,1-bisphosphonate (PTA) and interleukin-2, and the therapeutic potential of γδ T cells was examined through analyzing cell surface markers and cellular cytotoxicity against MPM in vitro using a europium chelate-based time-resolved fluorescence assay system and a luciferase-based luminescence assay system.

Results And Discussion: We successfully expanded γδ T cells from peripheral blood mononuclear cells of healthy donors and MPM patients. γδ T cells expressed natural killer receptors such as NKG2D and DNAM-1 and exhibited a moderate level of cytotoxicity to MPM cells in the absence of antigens. The inclusion of PTA, ()-4-hydroxy-3- methylbut-2-enyl diphosphate (HMBPP) or zoledronic acid (ZOL) induced a TCR-dependent cytotoxicity in γδ T cells and secreted interferon-γ (IFN-γ). In addition, γδ T cells expressing CD16 exhibited a significant level of cytotoxicity against MPM cells in the presence of an anti-epidermal growth factor receptor (EGFR) mAb, at lower concentrations than in clinical settings, whereas a detectable level of IFN-γ was not produced. Taken together, γδ T cells showed cytotoxic activity against MPM in three distinct mechanisms through NK receptors, TCRs and CD16. Since major histocompatibility complex (MHC) molecules are not involved in the recognition, both autologous and allogeneic γδ T cells could be used for the development of γδ T cell-based adoptive immunotherapy for MPM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10063812PMC
http://dx.doi.org/10.3389/fimmu.2023.1058838DOI Listing

Publication Analysis

Top Keywords

γδ cells
32
cytotoxicity mpm
12
cells
11
γδ
10
mpm
10
three distinct
8
distinct mechanisms
8
malignant pleural
8
pleural mesothelioma
8
mpm patients
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!