Effect of ellagic acid and retinoic acid on collagen and elastin production by human dermal fibroblasts.

Biomed Mater Eng

Department of Biomedical Engineering, College of Engineering and Computer Sciences, Marshall University, Huntington, WV, USA.

Published: September 2023

Background: Elastin is a fibrous protein key to the structure and support of skin as well as other organ tissues. Elastic fibers are located in the skin's dermal layer and make up approximately 2%-4% of the fat-free dry weight of the dermis in the skin of adults. Aging causes the progressive degradation of elastin fibers. Loss of these fibers can cause skin sagging and wrinkling, loss of healthy blood vessels and lung capacity, aneurysms, and Chronic Obstructive Pulmonary Disease (COPD).

Objective: We hypothesized that ellagic acid, a polyphenol, will increase elastin in human dermal fibroblasts (HDF) due to polyphenols' elastin binding properties.

Method: We treated HDF's with 2 μg/ml ellagic acid for 28 days to see the elastin deposition in HDF cell cultures. To test this, we treated HDFs with polyphenols ellagic acid for 3, 7, 14 and 21 days. For comparison purposes, we included a group of ellagic acid and retinoic acid since retinoic acid is already in the market for elastin regeneration purposes.

Results: When ellagic acid and retinoic acid were introduced together, insoluble elastin and collagen deposition were significantly higher in HDFs compared to other groups.

Conclusion: Polyphenols and retinoic acid can improve skin extracellular matrix production of elastin and collagen and may improve skin fine wrinkles.

Download full-text PDF

Source
http://dx.doi.org/10.3233/BME-230007DOI Listing

Publication Analysis

Top Keywords

ellagic acid
24
retinoic acid
20
acid retinoic
16
acid
10
elastin
9
human dermal
8
dermal fibroblasts
8
acid days
8
elastin collagen
8
improve skin
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!