Mitochondrial coenzyme Q (mtQ) of the inner mitochondrial membrane is a redox active mobile carrier in the respiratory chain that transfers electrons between reducing dehydrogenases and oxidizing pathway(s). mtQ is also involved in mitochondrial reactive oxygen species (mtROS) formation through the mitochondrial respiratory chain. Some mtQ-binding sites related to the respiratory chain can directly form the superoxide anion from semiubiquinone radicals. On the other hand, reduced mtQ (ubiquinol, mtQH2) recycles other antioxidants and directly acts on free radicals, preventing oxidative modifications. The redox state of the mtQ pool is a central bioenergetic patameter that alters in response to changes in mitochondrial function. It reflects mitochondrial bioenergetic activity and mtROS formation level, and thus the oxidative stress associated with the mitochondria. Surprisingly, there are few studies describing a direct relationship between the mtQ redox state and mtROS production under physiological and pathological conditions. Here, we provide a first overview of what is known about the factors affecting mtQ redox homeostasis and its relationship to mtROS production. We have proposed that the level of reduction (the endogenous redox state) of mtQ may be a useful indirect marker to assess total mtROS formation. A higher mtQ reduction level (mtQH2/mtQtotal) indicates greater mtROS formation. The mtQ reduction level, and thus the mtROS formation, depends on the size of the mtQ pool and the activity of the mtQ-reducing and mtQH2-oxidizing pathway(s) of respiratory chain. We focus on a number of physiological and pathophysiological factors affecting the amount of mtQ and thus its redox homeostasis and mtROS production level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.31083/j.fbl2803061 | DOI Listing |
Gen Physiol Biophys
January 2025
Shanghai University of Traditional Chinese Medicine, Shenzhen Hospital, Shenzhen, Guangdong, China.
Cerebral ischemia-reperfusion (I/R) is a serious complication in patients with ischemic stroke. Senkyunolide A (SenA) can alleviate neuronal cell damage induced by cerebral I/R; however, the exact action mechanism remains unclear. An in vitro cellular injury model was established by inducing PC-12 cells with OGD/R.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China. Electronic address:
Chronic ethanol (EtOH) consumption has been widely recognized as a significant contributor to cardiotoxicity. However, no specific treatment is currently available to ameliorate chronic ethanol induced cardiotoxicity. Adiponectin receptor agonist AdipoRon exerts protective effects in multiple organs through alleviating lipotoxicity.
View Article and Find Full Text PDFClin Transl Med
January 2025
Allergy Center, Department of Otolaryngology, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, China.
Background: House dust mite (HDM) is the leading allergen for allergic rhinitis (AR). Although allergic sensitisation by inhaled allergens renders susceptible individuals prone to developing AR, the molecular mechanisms driving this process remain incompletely elucidated.
Objective: This study aimed to elucidate the molecular mechanisms underlying HDM-induced AR.
J Transl Med
January 2025
Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine / Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
Background: Skeletal muscle injury caused by excessive exercise is one of the most commonly seen clinical diseases. It is indispensable to explore drugs for treating and relieving skeletal muscle injury. Gallic acid (GA) is a polyphenolic extract that has anti-inflammatory and antioxidant biological activities.
View Article and Find Full Text PDFbioRxiv
December 2024
College of Health Sciences, University of Memphis, Memphis, TN, USA.
Atherosclerosis, a major contributor to cardiovascular disease, involves lipid accumulation and inflammatory processes in arterial walls, with oxidized low-density lipoprotein (OxLDL) playing a central role. OxLDL is increased during aging and stimulates monocyte transformation into foam cells and induces metabolic reprogramming and pro-inflammatory responses, accelerating atherosclerosis progression and contributing to other age-related diseases. This study investigated the effects of Mdivi-1, a mitochondrial fission inhibitor, and S1QEL, a selective complex I-associated reactive oxygen species (ROS) inhibitor, on OxLDL-induced responses in monocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!