Controlling cell-free expression of a gene to protein with non-invasive stimuli is vital to the future application of DNA nanodevices and synthetic cells. However, little emphasis has been placed on developing light-controlled 'off' switches for cell-free expression. Light-activated antisense oligonucleotides have been developed to induce gene knockdown in living cells; however, they are complicated to synthesise and have not been tested in cell-free systems. Developing simple, accessible methods to produce light-activated antisense oligonucleotides will be crucial for allowing their application in cell-free biology and biotechnology. Here, we report a mild, one-step method for selectively attaching commercially-available photoremovable protecting groups, photocages, onto phosphorothioate linkages of antisense oligonucleotides. Using this photocaging method, upon illumination, the original phosphorothioate antisense oligonucleotide is reformed. Photocaged antisense oligonucleotides, containing mixed phosphorothioate and phosphate backbones, showed a drastic reduction in duplex formation and RNase H activity, which was recovered upon illumination. We then demonstrated that these photocaged antisense oligonucleotides can be used to knock down cell-free protein synthesis using light. This simple and accessible technology will have future applications in light-controlled biological logic gates and regulating the activity of synthetic cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10067960PMC
http://dx.doi.org/10.1038/s42004-023-00860-2DOI Listing

Publication Analysis

Top Keywords

antisense oligonucleotides
24
cell-free protein
8
protein synthesis
8
cell-free expression
8
synthetic cells
8
light-activated antisense
8
simple accessible
8
photocaged antisense
8
antisense
7
cell-free
6

Similar Publications

Transthyretin Cardiac Amyloidosis: Current and Emerging Therapies.

Curr Cardiol Rep

January 2025

The Pauley Heart Center, Virginia Commonwealth University, 1200 East Broad Street West Hospital, 8th Floor, West Wing, Richmond, VA, 23231, USA.

Purpose Of Review: In this article, we describe current and newer TTR stabilizers, TTR silencers which include small interfering RNA agents (siRNA), antisense oligonucleotides (ASO) and CRISPR-Cas9 gene editing, and TTR depleters, which investigates the use of monoclonal antibodies to remove amyloid fibril deposits for patients with advanced disease.

Recent Findings: Once thought to be a rare and fatal condition, increased recognition, improved non-invasive diagnostic tools, and the explosive development of novel therapies, has transformed the landscape of transthyretin amyloid cardiomyopathy (ATTR-CM). Advances in cardiac imaging with respect to echocardiography, cardiac magnetic resonance imaging (CMR), and radionuclide bone scintigraphy has increased the diagnosis of ATTR-CM over the last twenty years.

View Article and Find Full Text PDF

Application of antisense oligonucleotide drugs in amyotrophic lateral sclerosis and Huntington's disease.

Transl Neurodegener

January 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.

Amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD) are diverse in clinical presentation and are caused by complex and multiple factors, including genetic mutations and environmental factors. Numerous therapeutic approaches have been developed based on the genetic causes and potential mechanisms of ALS and HD. Currently, available treatments for various neurodegenerative diseases can alleviate symptoms but do not provide a definitive cure.

View Article and Find Full Text PDF

Background: Stargardt disease type 1 (STGD1) is a progressive retinal disorder caused by bi-allelic variants in the ABCA4 gene. A recurrent variant at the exon-intron junction of exon 6, c.768G>T, causes a 35-nt elongation of exon 6 that leads to premature termination of protein synthesis.

View Article and Find Full Text PDF

Background: Spinal muscular atrophy (SMA) is a motor neuron disease caused by mutations in the SMN1 gene. Nusinersen, an antisense oligonucleotide, has been shown to improve motor function in SMA patients. However, concerns regarding its renal safety remain as previous studies have linked similar treatments to renal toxicity.

View Article and Find Full Text PDF

Globally, the incidence and death rates associated with cancer persist in rising, despite considerable advancements in cancer therapy. Although some malignancies are manageable by a mix of chemotherapy, surgery, radiation, and targeted therapy, most malignant tumors either exhibit poor responsiveness to early identification or endure post-treatment survival. The prognosis for prostate cancer (PCa) is unfavorable since it is a perilous and lethal malignancy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!