A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluating the generalizability of deep learning image classification algorithms to detect middle ear disease using otoscopy. | LitMetric

To evaluate the generalizability of artificial intelligence (AI) algorithms that use deep learning methods to identify middle ear disease from otoscopic images, between internal to external performance. 1842 otoscopic images were collected from three independent sources: (a) Van, Turkey, (b) Santiago, Chile, and (c) Ohio, USA. Diagnostic categories consisted of (i) normal or (ii) abnormal. Deep learning methods were used to develop models to evaluate internal and external performance, using area under the curve (AUC) estimates. A pooled assessment was performed by combining all cohorts together with fivefold cross validation. AI-otoscopy algorithms achieved high internal performance (mean AUC: 0.95, 95%CI: 0.80-1.00). However, performance was reduced when tested on external otoscopic images not used for training (mean AUC: 0.76, 95%CI: 0.61-0.91). Overall, external performance was significantly lower than internal performance (mean difference in AUC: -0.19, p ≤ 0.04). Combining cohorts achieved a substantial pooled performance (AUC: 0.96, standard error: 0.01). Internally applied algorithms for otoscopy performed well to identify middle ear disease from otoscopy images. However, external performance was reduced when applied to new test cohorts. Further efforts are required to explore data augmentation and pre-processing techniques that might improve external performance and develop a robust, generalizable algorithm for real-world clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10067817PMC
http://dx.doi.org/10.1038/s41598-023-31921-0DOI Listing

Publication Analysis

Top Keywords

external performance
20
deep learning
12
middle ear
12
ear disease
12
otoscopic images
12
performance
9
disease otoscopy
8
learning methods
8
identify middle
8
internal external
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!