Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Our visual environment is relatively stable over time. An optimized visual system could capitalize on this by devoting less representational resources to objects that are physically present. The vividness of subjective experience, however, suggests that externally available (perceived) information is more strongly represented in neural signals than memorized information. To distinguish between these opposing predictions, we use EEG multivariate pattern analysis to quantify the representational strength of task-relevant features in anticipation of a change-detection task. Perceptual availability was manipulated between experimental blocks by either keeping the stimulus available on the screen during a 2-s delay period (perception) or removing it shortly after its initial presentation (memory). We find that task-relevant (attended) memorized features are more strongly represented than irrelevant (unattended) features. More importantly, we find that task-relevant features evoke significantly weaker representations when they are perceptually available compared with when they are unavailable. These findings demonstrate that, contrary to what subjective experience suggests, vividly perceived stimuli elicit weaker neural representations (in terms of detectable multivariate information) than the same stimuli maintained in visual working memory. We hypothesize that an efficient visual system spends little of its limited resources on the internal representation of information that is externally available anyway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267620 | PMC |
http://dx.doi.org/10.1093/cercor/bhad064 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!