Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Phytoremediation using trees combined with soil amendments has gained much attention for its highly cost-effective trait. In natural field conditions, however, the results may not reflect the true performance of amendments based on short-term laboratory studies. In this three-year field trial, various soil amendments such as rice straw biochar, palygorskite, a combined biochar of rice straw biochar and palygorskite, and hydroxyapatite were used to systematically study the potential of the low-accumulator (Quercus fabri Hance) and high-accumulator (Quercus texana Buckley) for cadmium (Cd) and zinc (Zn) to remediate severely contaminated soils. Soil amendments enhanced the dendroremediation capacity of Quercus as the growth period prolonged. In 2021, the rice straw biochar treatment increased Cd and Zn accumulation by 1.76 and 2.09 times in Q. fabri, respectively, compared to the control. Cd and Zn accumulation increased to 1.78 and 2.10 times, respectively, under combined biochar treatment for Q. texana compared to the control. Metals accumulation was mainly enhanced by soil amendments through increasing the growth biomass of Q. fabri and improving the biomass and bioconcentration ability of Q. texana. Overall, soil amendments effectively improved the phytoremediation efficiency of Quercus in the long term, and selecting suitable amendments should be fully considered in phytoremediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.163245 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!