A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Computed tomography enterography-based multiregional radiomics model for differential diagnosis of Crohn's disease from intestinal tuberculosis. | LitMetric

Purpose: To build computed tomography enterography (CTE)-based multiregional radiomics model for distinguishing Crohn's disease (CD) from intestinal tuberculosis (ITB).

Materials And Methods: A total of 105 patients with CD and ITB who underwent CTE were retrospectively enrolled. Volume of interest segmentation were performed on CTE and radiomic features were obtained separately from the intestinal wall of lesion, the largest lymph node (LN), and region surrounding the lesion in the ileocecal region. The most valuable radiomic features was selected by the selection operator and least absolute shrinkage. We established nomogram combining clinical factors, endoscopy results, CTE features, and radiomic score through multivariate logistic regression analysis. Receiver operating characteristic (ROC) curves and decision curve analysis (DCA) were used to evaluate the prediction performance. DeLong test was applied to compare the performance of the models.

Results: The clinical-radiomic combined model comprised of four variables including one radiomic signature from intestinal wall, one radiomic signature from LN, involved bowel segments on CTE, and longitudinal ulcer on endoscopy. The combined model showed good diagnostic performance with an area under the ROC curve (AUC) of 0.975 (95% CI 0.953-0.998) in the training cohort and 0.958 (95% CI 0.925-0.991) in the validation cohort. The combined model showed higher AUC than that of the clinical model in cross-validation set (0.958 vs. 0.878, P = 0.004). The DCA showed the highest benefit for the combined model.

Conclusion: Clinical-radiomic combined model constructed by combining CTE-based radiomics from the intestinal wall of lesion and LN, endoscopy results, and CTE features can accurately distinguish CD from ITB.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00261-023-03889-yDOI Listing

Publication Analysis

Top Keywords

combined model
16
intestinal wall
12
computed tomography
8
multiregional radiomics
8
radiomics model
8
crohn's disease
8
disease intestinal
8
intestinal tuberculosis
8
radiomic features
8
wall lesion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!