Kinetics and mechanism study of dyes degradation in electric field-promoting catalytic wet air oxidation process.

J Environ Manage

Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, East China Engineering Science & Technology Co., Ltd., Hefei, 230088, China.

Published: July 2023

AI Article Synopsis

Article Abstract

Wet air oxidation (WAO) is a clean and eco-friendly technology for dyes removal, but the high operating temperature and pressure limit its practical application. In the present work, an electric field-promoting (EF-promoting) catalytic WAO process is developed to degrade dyes under room condition. The oxidation kinetics of four different types of dyes and their degradation pathways are studied. A kinetic model is constructed by including the exogenous electric field into the Langmuir-Hinshelwood-Hougen-Watson (LHHW) mechanism framework, and quantitative structure-activity relationship (QSAR) analysis is conducted to correlate the kinetic parameters to the physicochemical properties of the dyes. A negative linear relationship is found between the adsorption equilibrium constants of the dyes and their first ionization energies, and their surface reaction rate constants are positively linearly associated to E (E + E). The degradation pathways of the different dyes are proposed according to the degradation intermediates and the activities of the atoms within the dye molecules. The heteroatoms N and S, and the atom C connecting the aromatic rings are identified as the susceptible sites upon the electrophilic attack of O. Bond cleavage at these sites gives rise to aromatic fragments which are eventually mineralized via carboxyl acids. The results of this work is helpful for guiding the design and operation of the EF-promoting catalytic WAO process into the treatment of various dye wastewaters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.117843DOI Listing

Publication Analysis

Top Keywords

dyes degradation
8
electric field-promoting
8
wet air
8
air oxidation
8
ef-promoting catalytic
8
catalytic wao
8
wao process
8
degradation pathways
8
dyes
7
kinetics mechanism
4

Similar Publications

This research highlights a sustainable approach for the design and synthesis of a magnetic nickel ferrite (NiFeO) catalyst reutilizing industrial waste, specifically iron ore tailing and Raney nickel catalyst processing waste, by simple co-precipitation method. Transforming waste materials into high-performance catalysts, this study aligns with the principles of a circular economy, addressing both environmental waste and pollution. Structural characterization by X-ray diffraction (XRD) and microscopic (FESEM and TEM) revealed the formation of well crystalline nano ferrite with NiFeO nanoparticles with cubic spinel structure.

View Article and Find Full Text PDF

Carbonic Anhydrase IX Targeted Polyaspartamide fluorescent Probes for Tumor imaging.

Int J Nanomedicine

January 2025

College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang Province, 324000, People's Republic of China.

Background: Precise intraoperative tumor delineation is essential for successful surgical outcomes. However, conventional methods are often incompetent to provide intraoperative guidance due to lack specificity and sensitivity. Recently fluorescence-guided surgery for tumors to delineate between cancerous and healthy tissues has attracted widespread attention.

View Article and Find Full Text PDF

Depression is a mental health disorder and is the fourth most prevalent disease. Previous studies have suggested that statins are involved in the reduction of neuroinflammation. However, the potential mechanism for this relationship is unclear.

View Article and Find Full Text PDF

Synthetic Notch (SynNotch) receptors function like natural Notch proteins and can be used to install customized sense-and-respond capabilities into mammalian cells. Here, we introduce an adaptor-based strategy for regulating SynNotch activity via fluorescein isomers and analogs. Using an optimized fluorescein-binding SynNotch receptor, we describe ways to chemically control SynNotch signaling, including an approach based on a bio-orthogonal chemical ligation and a spatially controllable strategy via the photo-patterned uncaging of an o-nitrobenzyl-caged fluorescein conjugate.

View Article and Find Full Text PDF

Exosomes, which are known to transport diverse proteins from parent cells to recipient cells, consequently influence the biological activities of the recipient cells. Among those proteins, the epithelial cell adhesion molecule (EpCAM), plays a crucial role as it is implicated in cell adhesion and signaling processes. As exosomal EpCAM potentially affects the migration of recipient cells, direct visualization with high spatial resolution is essential to better understand this impact and the role of exosomal EpCAM in recipient cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!