The present study dealt with the five marine microalgae strains viz., Chloroidium saccharophilum, Picochlorum maculatum, Amphora sp., Hymenomonas globosa and Limnospira indica and their effective degradation ability of Low-Density Polyethylene for the period of 45 days. The incubation of LDPE in microalgae culture has resulted in the maximum weight loss (20.16 ± 0.14 %), higher reduction rate (0.005/day) and lower half-life (138.4 days) in the LDPE treated with P. maculatum. The SEM images of all treated LDPE revealed surface erosion and the ATR-FTIR spectra showed functional group peaks along with new peaks at 1369.35 cm, 2332.96 cm and 500-726 cm. Carbonyl (Keto, Ester), Vinyl and Internal double bond indices increased significantly in all the treated groups. The crystallinity was decreased (64.13 %) in P. maculatum treated LDPE than the control (71.37 %). Thermogravimetric analysis showed the reduction in thermal stability after biodegradation. This efficient microalgal degradation as a bioremediation technique will reduce the plastic pollution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2023.114889DOI Listing

Publication Analysis

Top Keywords

marine microalgae
8
low-density polyethylene
8
treated ldpe
8
ldpe
5
biodegradation efficacy
4
efficacy selected
4
selected marine
4
microalgae low-density
4
polyethylene ldpe
4
ldpe environment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!