Senomorphic effect of diphenyleneiodonium through AMPK/MFF/DRP1 mediated mitochondrial fission.

Biomed Pharmacother

Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan; Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Centers for Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan. Electronic address:

Published: June 2023

With an aging population and the numerous health impacts associated with old age, the identification of anti-aging drugs has become an important new research direction. Although mitochondria have been recognized to affect aging, anti-aging drugs specifically targeting the mitochondria are less well characterized. In this study, diphenyleneiodonium (DPI) was identified as a potential senomorphic drug that functions by promoting mitochondrial fission. DPI significantly reduced the number of senescence-associated β-galactosidase (SA-β-gal) positive cells and increased the number of proliferating Ki-67 positive cells in BrdU or irradiation stress-induced senescent NIH3T3 cells or IMR90 cells and mouse embryonic fibroblasts (MEFs) replicative senescent cells. Cell cycle arrest genes and senescence-associated secretory phenotype (SASP) factors were downregulated with DPI treatment. In addition, the oxygen consumption rate (OCR) of mitochondrial respiration showed that DPI significantly reduced senescence-associated hyper OCR. Mechanistically, DPI promoted mitochondrial fission by enhancing AMPK/MFF phosphorylation and DRP1 mitochondrial translocation. Inhibition of DRP1 by Mdivi-1 abolished DPI-induced mitochondrial fission and the anti-senescence phenotype. Importantly, Eighty-eight-week-old mice treated with DPI had significantly reduced numbers of SA-β-gal positive cells and reduced expression of cell cycle arrest genes and SASP factors in their livers and kidneys. Pathological and functional assays showed DPI treatment not only reduced liver fibrosis and immune cell infiltration but also improved aged-related physical impairments in aged mice. Taken together, our study identified a potential anti-aging compound that exerts its effects through modulation of mitochondrial morphology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2023.114616DOI Listing

Publication Analysis

Top Keywords

mitochondrial fission
16
dpi reduced
12
positive cells
12
anti-aging drugs
8
identified potential
8
sa-β-gal positive
8
cell cycle
8
cycle arrest
8
arrest genes
8
sasp factors
8

Similar Publications

Background & Aims: Metabolic dysfunction-associated steatotic liver (MASLD) progression is driven by chronic inflammation and fibrosis, largely influenced by Kupffer cell (KC) dynamics, particularly replenishment of pro-inflammatory monocyte-derived KCs (MoKCs) due to increased death of embryo-derived KCs. Adenosine A3 receptor (A3AR) plays a key role in regulating metabolism and immune responses, making it a promising therapeutic target. This study aimed to investigate the impact of selective A3AR antagonism for regulation of replenished MoKCs, thereby improving MASLD.

View Article and Find Full Text PDF

New insights into the relationship of mitochondrial metabolism and atherosclerosis.

Cell Signal

December 2024

Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang 212001, China. Electronic address:

Atherosclerotic cardiovascular and cerebrovascular diseases are the number one killer of human health. In view of the important role of mitochondria in the formation and evolution of atherosclerosis, our manuscript aims to comprehensively elaborate the relationship between mitochondria and the formation and evolution of atherosclerosis from the aspects of mitochondrial dynamics, mitochondria-organelle interaction (communication), mitochondria and cell death, mitochondria and vascular smooth muscle cell phenotypic switch, etc., which is combined with genome, transcriptome and proteome, in order to provide new ideas for the pathogenesis of atherosclerosis and the diagnosis and treatment of related diseases.

View Article and Find Full Text PDF

Background: Increased reactive oxygen species (ROS) are involved in the pathological process of dry eye disease. Our previous results suggested that norepinephrine (NE) has a protective effect on dry eye.

Purpose: This study explored the potential therapeutic role and underlying mechanisms of NE in benzalkonium chloride (BAC)-induced dry eye disease.

View Article and Find Full Text PDF

Background: The risk of mosquito-borne disease transmission is increasing in temperate climates with the colonization and proliferation of the Asian tiger mosquito vector Aedes albopictus and the rapid mass transport of passengers returning from tropical regions where viruses are endemic. The prevention of major Aedes-borne viruses heavily relies on the use of insecticides for vector control, mainly pyrethroids. In Europe, only deltamethrin is authorized.

View Article and Find Full Text PDF

Nuclear respiratory factor-1 (NRF1) induction drives mitochondrial biogenesis and attenuates amyloid beta-induced mitochondrial dysfunction and neurotoxicity.

Neurotherapeutics

December 2024

Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA; Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX, 77030, USA. Electronic address:

Mitochondrial dysfunction is an important driver of neurodegeneration and synaptic abnormalities in Alzheimer's disease (AD). Amyloid beta (Aβ) in mitochondria leads to increased reactive oxygen species (ROS) production, resulting in a vicious cycle of oxidative stress in coordination with a defective electron transport chain (ETC), decreasing ATP production. AD neurons exhibit impaired mitochondrial dynamics, evidenced by fusion and fission imbalances, increased fragmentation, and deficient mitochondrial biogenesis, contributing to fewer mitochondria in brains of AD patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!