We present the morphological evolution and fractal characterizations of CaF thin-film surfaces modified by bombardment with 100 MeV Au ions at various fluences. Atomic force microscopy (AFM) combined with line profile and two-dimensional power spectral density (2D-PSD) analysis was utilized to investigate the evolution of surface morphology as a function of fluence. The AFM images were utilized to investigate the relationship between fractal dimension, roughness exponent, lateral correlation length, and ion fluence. The surface erosion owing to sputtering was depicted using Rutherford backscattering spectrometry. The structural characteristics' dependency on fluence was explored with the help of glancing angle x-ray diffraction measurements on virgin and irradiated samples. Tensile stress calculated using a peak shift in the glancing angle x-ray diffractogram showed an increase in tensile stress with fluence that caused the surface to crack after the fracture strength of the surface was crossed. 2D-PSD analysis signified the role of sputtering over surface diffusion for the observed surface modifications. Fractal dimensions first increased and then decreased with ion fluence. The lateral correlation length decreased, while the roughness exponent increased with fluence after the threshold value.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0135127 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3000, Australia.
Protein-nanoparticle interactions and the resulting corona formation play crucial roles in the behavior and functionality of nanoparticles in biological environments. In this study, we present a comprehensive analysis of protein corona formation with superfolder green fluorescent protein (sfGFP) and bovine serum albumin in silica nanoparticle dispersions using small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS). For the first time, we subtracted the scattering of individual proteins in solution and individual nanoparticles from the protein-nanoparticle complexes.
View Article and Find Full Text PDFEntropy (Basel)
January 2025
School of Tourism and Planning, Pingdingshan University, Pingdingshan 467000, China.
The formation and development of cities are inseparable from a certain scale of water resources. The information contained in the morphological structures of cities and water systems is often overlooked. Exploring the spatiotemporal evolution of water system structures (WSS) and urban system structures (USS) can reveal the "urban-water" relationship from a new perspective.
View Article and Find Full Text PDFInt J Neurosci
January 2025
Department of Mathematics, Payame Noor University, Tehran, Iran.
The developing brain undergoes a remarkable process of synapse production and maturation, particularly in glutamatergic synapses. In this study, we focused on the locus coeruleus (LC) nucleus, a brain region crucial for cognitive functions, to investigate the developmental changes in glutamatergic synaptic connections. Using the whole-cell patch clamp method, we recorded evoked excitatory postsynaptic currents (eEPSCs) from LC neurons in rats at ages 7, 14, and 21 days.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, Rio Grande do Sul, Brazil.
Oil has become a prevalent global pollutant, stimulating the research to improve the techniques to separate oil from water. Materials with special wetting properties-primarily those that repel water while attracting oil-have been proposed as suitable candidates for this task. However, one limitation in developing efficient substrates is the limited available volume for oil absorption.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; International Institute of Food Innovation Co, Ltd, Nanchang University, Nanchang 330200, China. Electronic address:
Extrusion is a critical process in rice noodle production. However, the underlying mechanism by which it influences noodle quality remains inadequately understood. In this study, rice noodles were processed at extrusion temperatures ranging from 100 °C to 140 °C and characterized in terms of molecular structure, short- and long-range order, microstructure, cooking loss, and texture properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!