A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Non-normality and transient growth in stall flutter instability. | LitMetric

Non-normality and transient growth in stall flutter instability.

Chaos

Department of Mechanical Engineering, Shiv Nadar Institute of Eminence, Greater Noida 203207, India.

Published: March 2023

The non-normal nature and transient growth in amplitude and energy of a pitch-plunge aeroelastic system undergoing dynamic stall are explored in this paper through numerical and supporting experimental studies. Wind tunnel experiments, carried out for a canonical pitch-plunge aeroelastic system in a subsonic wind tunnel, show that the system undergoes stall flutter instability via a sub-critical Hopf bifurcation. The aeroelastic responses indicate a transient growth in amplitude and energy-possibly triggering the sub-criticality, which is critical from the purview of structural safety. The system also shows transient energy growth followed by decaying oscillation for certain initial conditions, whereas sustained limit cycle oscillations are encountered for other initial conditions at flow speeds lower than the critical speed. The triggering behavior observed in the wind tunnel experiments is understood better by resorting to study the numerical model of the nonlinear aeroelastic system. To that end, a modified semi-empirical Leishman-Beddoes dynamic stall model is adopted to represent the nonlinear aerodynamic loads of the pitch-plunge aeroelastic system. The underlying linear operator and its pseudospectral analysis indicate that the aeroelastic system is non-normal, causing amplification in amplitude and energy for a short period.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0143321DOI Listing

Publication Analysis

Top Keywords

aeroelastic system
20
transient growth
12
pitch-plunge aeroelastic
12
wind tunnel
12
stall flutter
8
flutter instability
8
growth amplitude
8
amplitude energy
8
dynamic stall
8
tunnel experiments
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!