Bayesian selection of plane-wave decomposition models.

JASA Express Lett

School of Architecture, Rensselaer Polytechnic Institute, Troy, New York 12180, USA

Published: March 2023

Plane-wave decompositions, whereby a measured sound field is described as a superposition of plane waves, are central to many applications in acoustics and audio engineering. This letter applies a Bayesian probabilistic inference framework to the plane wave decomposition problem and examines the Deviance Information Criterion (DIC) for selecting the optimum number of waves in the decomposition. The framework learns the model directly from the data and, as such, adapts to the wavefield under study. The DIC is applied to data measured in two reverberant sound fields (highly-reverberant and lightly-damped) to determine the simplest models providing the preferred fit to the data.

Download full-text PDF

Source
http://dx.doi.org/10.1121/10.0017440DOI Listing

Publication Analysis

Top Keywords

bayesian selection
4
selection plane-wave
4
plane-wave decomposition
4
decomposition models
4
models plane-wave
4
plane-wave decompositions
4
decompositions measured
4
measured sound
4
sound field
4
field described
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!