Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Myocardial perfusion imaging by nuclear cardiology is widely validated for the diagnosis, risk stratification, and management of patients with suspected or known coronary artery disease. Numerous radiopharmaceuticals are available for single-photon emission computed tomography and PET modalities. Each tracer shows advantages and limitations that should be taken into account in performing an imaging examination. This review aimed to summarize the state-of-the-art radiotracers used for myocardial perfusion imaging and blood flow quantification, highlighting the new technologic advances and promising possible applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ccl.2023.01.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!