Long-term exposure of zebrafish juveniles to carbon nanofibers at predicted environmentally relevant concentrations: Outspreading warns about ecotoxicological risks to freshwater fish.

Sci Total Environ

Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Brazilian Academy of Young Scientists (ABJC), Brazil. Electronic address:

Published: June 2023

Although carbon-based nanomaterials (CNMs) toxicity has already been demonstrated in some animal models, little is known about the impact of carbon nanofibers (CNFs) on aquatic vertebrates. Thus, we aimed to evaluate the possible effects of long-term exposure of zebrafish (Danio rerio) juveniles (90 days) to CNFs in predicted environmentally relevant concentrations (10 ng/L and 10 μg/L). Our data revealed that exposure to CNFs did not affect the growth and development of the animals, in addition to not having induced locomotor alterations or anxiety-like behavior. On the other hand, we observed that zebrafish exposed to CNFs showed a response deficit to the vibratory stimulus test, alteration in the density of neuromasts recorded in the final ventral region, as well as an increase in thiobarbituric acid reactive substances levels and a reduction in total antioxidant activity, nitric oxide, and acetylcholinesterase activity in the brain. Such data were directly associated with a higher concentration of total organic carbon in the brain, which suggests the bioaccumulation of CNFs. Furthermore, exposure to CNFs induced a picture suggestive of genomic instability, inferred by the increased frequency of nuclear abnormalities and DNA damage in circulating erythrocytes. Although the individual analyses of the biomarkers did not point to a concentration-dependent effect, the principal component analysis (PCA) and the Integrated Biomarker Response Index (IBRv2) indicate a more prominent effect induced by the higher CNFs concentration (10 μg/L). Therefore, our study confirms the impact of CNFs in the studied model (D. rerio) and sheds light on the ecotoxicological risks of these nanomaterials to freshwater fish. Based on the ecotoxicological screening provided by our study, new horizons are opened for investigations into the mechanisms of action of CNFs, which will help understand the magnitude of the impact of these materials on aquatic biota.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.163153DOI Listing

Publication Analysis

Top Keywords

cnfs
9
long-term exposure
8
exposure zebrafish
8
carbon nanofibers
8
predicted environmentally
8
environmentally relevant
8
relevant concentrations
8
ecotoxicological risks
8
freshwater fish
8
exposure cnfs
8

Similar Publications

Cellulose nanofibrils (CNFs) are advanced biomaterials valued for their strength, lightweight nature, and low thermal expansion, making them suitable for diverse industrial applications. However, their potential inhalation risks necessitate thorough safety evaluations. This study investigates the pulmonary inflammatory effects and retention of CNFs following intratracheal instillation in rats.

View Article and Find Full Text PDF

The full exploitation of the outstanding mechanical properties of cellulose nanofibrils (CNFs) as potential reinforcements in nanocomposite materials is limited by the poor interactions at the CNF-polymer matrix interface. Within this work, tailor-made copolymers were designed to mediate the interface between CNFs and biodegradable poly(butylene adipate--terephthalate) (PBAT), and their effect on extruded nanocomposite performance was tested. For this purpose, two well-defined amphiphilic anchor-tail diblock copolymer structures were compared, with a fixed anchor block length and a large difference in the hydrophobic tail block length.

View Article and Find Full Text PDF

Well-designed structures of the electrocatalyst provide excellent catalytic activity and high structural stability during the sulfur reduction reaction of Lithium-sulfur batteries (LSBs). In this study, a novel and efficient structure is developed to encapsulate bimetallic FeCo nanoalloy catalysts within N-doped carbon nanotube (NCNT) on carbon nanofibers (FeCo@NCNT/CNFs) using a combination of electrospinning and rapid-cooling techniques. The NCNT matrix with abundant sites not only serves as a high pathway for electron transport during the reaction, but its encapsulation structure also acts as armor to protect the FeCo nanoalloy.

View Article and Find Full Text PDF

Thin and Flexible PANI/PMMA/CNF Forest Films Produced via a Two-Step Floating Catalyst Chemical Vapor Deposition.

Materials (Basel)

November 2024

Research Lab of Advanced, Composite, Nanomaterials and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Str., Zographos, 15780 Athens, Greece.

In this paper, we explore a straightforward two-step method to produce high-purity, vertically aligned multi-walled carbon nanofibres (MWCNFs) via chemical vapor deposition (CVD). Two distinct solutions are utilized for this CVD method: a catalytic solution consisting of ferrocene and acetonitrile (ACN) and a carbon source solution with camphor and ACN. The vapors of the catalytic solution inserted in the reaction chamber through external boiling result in a floating catalyst CVD approach that produces vertically aligned CNFs in a consistent manner.

View Article and Find Full Text PDF

To improve the poor thermal conductivity of microencapsulated phase change materials (MPCMs), a strategy was designed with effective combinations between graphene nanosheets (GNs) and shells to prepare thermally conductive MPCMs-GNs by using cellulose nanofibers (CNFs) to assist GN dispersion. The experiments and theoretical calculations both illustrated that CNFs effectively prevented GNs from aggregating due to the strong Van der Walls interactions between CNFs and GNs. The morphologies and structures of MPCMs with and without GNs were characterized by SEM, FTIR and XRD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!